Heterotrophic cells must ingest biomass to obtain their energy and nutrition. Heterotrophic microorganisms mostly feed upon dead plants and animals, and are known as decomposers. ... Some animals also specialize on feeding on dead organic matter, and are known as scavengers or detritivores. Hope this was helpful.
(a)
pH = 4.77
; (b)
[
H
3
O
+
]
=
1.00
×
10
-4
l
mol/dm
3
; (c)
[
A
-
]
=
0.16 mol⋅dm
-3
Explanation:
(a) pH of aspirin solution
Let's write the chemical equation as
m
m
m
m
m
m
m
m
l
HA
m
+
m
H
2
O
⇌
H
3
O
+
m
+
m
l
A
-
I/mol⋅dm
-3
:
m
m
0.05
m
m
m
m
m
m
m
m
l
0
m
m
m
m
m
l
l
0
C/mol⋅dm
-3
:
m
m
l
-
x
m
m
m
m
m
m
m
m
+
x
m
l
m
m
m
l
+
x
E/mol⋅dm
-3
:
m
0.05 -
l
x
m
m
m
m
m
m
m
l
x
m
m
x
m
m
m
x
K
a
=
[
H
3
O
+
]
[
A
-
]
[
HA
]
=
x
2
0.05 -
l
x
=
3.27
×
10
-4
Check for negligibility
0.05
3.27
×
10
-4
=
153
<
400
∴
x
is not less than 5 % of the initial concentration of
[
HA
]
.
We cannot ignore it in comparison with 0.05, so we must solve a quadratic.
Then
x
2
0.05
−
x
=
3.27
×
10
-4
x
2
=
3.27
×
10
-4
(
0.05
−
x
)
=
1.635
×
10
-5
−
3.27
×
10
-4
x
x
2
+
3.27
×
10
-4
x
−
1.635
×
10
-5
=
0
x
=
1.68
×
10
-5
[
H
3
O
+
]
=
x
l
mol/L
=
1.68
×
10
-5
l
mol/L
pH
=
-log
[
H
3
O
+
]
=
-log
(
1.68
×
10
-5
)
=
4.77
(b)
[
H
3
O
+
]
at pH 4
[
H
3
O
+
]
=
10
-pH
l
mol/L
=
1.00
×
10
-4
l
mol/L
(c) Concentration of
A
-
in the buffer
We can now use the Henderson-Hasselbalch equation to calculate the
[
A
-
]
.
pH
=
p
K
a
+
log
(
[
A
-
]
[
HA
]
)
4.00
=
−
log
(
3.27
×
10
-4
)
+
log
(
[
A
-
]
0.05
)
=
3.49
+
log
(
[
A
-
]
0.05
)
log
(
[
A
-
]
0.05
)
=
4.00 - 3.49
=
0.51
[
A
-
]
0.05
=
10
0.51
=
3.24
[
A
-
]
=
0.05
×
3.24
=
0.16
The concentration of
A
-
in the buffer is 0.16 mol/L.
hope this helps :)
Description of a nerve signal
The nerve signal, or action potential, is a coordinated movement of sodium and potassium ions across the nerve cell membrane. Here's how it works: As we discussed, the inside of the cell is slightly negatively charged (resting membrane potential of -70 to -80 mV).