Answer:

Explanation:
The balanced equation is
I₂(g) + Br₂(g) ⇌ 2IBr(g)
Data:
Kc = 8.50 × 10⁻³
n(IBr) = 0.0600 mol
V = 1.0 L
1. Calculate [IBr]
![\text{[IBr]} = \dfrac{\text{0.0600 mol}}{\text{1.0 L}} = \text{0.0600 mol/L}](https://tex.z-dn.net/?f=%5Ctext%7B%5BIBr%5D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B0.0600%20mol%7D%7D%7B%5Ctext%7B1.0%20L%7D%7D%20%3D%20%5Ctext%7B0.0600%20mol%2FL%7D)
2. Set up an ICE table.

3. Calculate [I₂]
4. Convert the temperature to kelvins
T = (150 + 273.15) K = 423.15 K
5. Calculate p(I₂)

Answer:
300.06 grams of glucose can be produced from a photosynthesis reaction that occurs using 10 moles of carbon dioxide.
Explanation:
Explanation:
Formula to calculate hybridization is as follows.
Hybridization =
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
So, hybridization of
is as follows.
Hybridization =
=
= 2
Hybridization of
is sp. Therefore,
is a linear molecule. There will be only two electron groups through which Be is attached.
Similarly, hybridization of
is calculated as follows.
Hybridization =
=
= 5
Therefore, hybridization of
is
is also a linear molecule. Though there are three lone pair of electrons present on a xenon atom and it is further attached with fluorine atoms through two electron pairs. Hence, there are in total five electron groups.
Thus, we can conclude that out of the given options
is the correct examples of linear molecules for five electron groups.
Answer:
B) 16 g
Explanation:
First we <u>convert 4 moles of O₂ into moles of H₂</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 4 mol O₂ *
= 8 mol H₂
Finally we <u>convert 8 moles of H₂ into grams</u>, using <em>its molar mass</em>:
- 8 mol H₂ * 2 g/mol = 16 g
Thus, the correct answer is option B).