Explanation:
The given data is as follows.
Mass of ice dropped = 325 g
Initial temperature =
= (30 + 273) K = 303 K
Final temperature =
= (0 + 273) K = 273 K
Now, using density of water calculate the mass of ice as follows.

= 500 g
As the relation between heat energy, specific heat and change in temperature is as follows.
Q = 
= 
= 62750 J
Also, relation between heat energy and latent heat of fusion is as follows.
Q = m L
= 
= 108300 J
Therefore, we require
heat but we have 40774.95 J.
So, 
=
= 188.4 g
Hence, the mass of ice = 325 g - 188.4 g
= 137 g
Therefore, we can conclude that 137 g of ice will still be present when the contents of the pitcher reach a final temperature.
Answer:
A mixture is the blending of two or more dissimilar substances. A major characteristic of mixtures is that the materials do not chemically combine. Mixtures can be divided into those that are evenly distributed (homogeneous) and those that aren't (heterogeneous).
Explanation:
The correct answer is base
A bottle.I has a neck and but a head
Answer:
Divide the mass of your anhydrous (heated) salt sample by the molar mass of the anhydrous compound to get the number of moles of compound present. In our example, 16 grams / 160 grams per mole = 0.1 moles. Divide the mass of water lost when you heated the salt by the molar mass of water, roughly 18 grams per mole.In order to determine the formula of the hydrate, [Anhydrous Solid⋅xH2O], the number of moles of water per mole of anhydrous solid (x) will be calculated by dividing the number of moles of water by the number of moles of the anhydrous solid (Equation 2.12. 6).