Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
Is it inches millimeters meters ?
Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
Answer:
23.71J is the work that the gas do.
Explanation:
The work that a gas do under isobaric conditions follows the formula:
W = P*ΔV
<em>Where W is work in atmL, P is the pressure and ΔV is final volume -Initial volume In Liters</em>
Replacing with the values of the problem:
W = P*ΔV
W = 0.600atm*(0.44000L - 0.0500L)
W = 0.234atmL
In Joules (1atmL = 101.325J):
0.234atmL × (101.325J / 1 atmL) =
<h3>23.71J is the work that the gas do.</h3>
<em />
I would say the second option
Hope this helps *smiles*