Answer:
I say the 1st one I'm so terrible sorry if I'm wrong
Explanation:
Water can take many forms. At low temperatures (below 0°C), it is a solid. When at “normal” temperatures (between 0°C and 100°C), it is a liquid. While at temperatures above 100°C, water is a gas (steam).
The state the water is in depends upon the temperature. Each state (solid, liquid, and gas) has its own unique set of physical properties.
Answer:
the specific heat capacity of ethanol is 2.4608 J/g°C
The variation in the final temperature is due to the rate of heat lost. Calorimeters do not dissipate or absorb energy
Explanation:
the solution is in the attached Word file
Complete Question
Identify whether the following activity on the table shown on the first uploaded image are examples of business level or corporate level strategy
Answer:
The solution to this is shown on the second uploaded image
Explanation:
The explanation is shown on the third and fourth uploaded image
Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to its temperature if<u> the temperature and the number of particles are constant.</u>
<h3>Further Explanation</h3><h3>Boyles’s law </h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
- Mathematically; Volume α 1/Pressure
Vα1/P
- Therefore, constant k, is = PV
<h3>Other gas Laws</h3><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Charles’s law</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Boyles's law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:</h3>
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Boyle's Law
Answer:
1s2 2s2 2p6 3s2 3p6 3d6 4s2
Explanation: