Answer:
Aluminum metal
Explanation:
In order to properly answer this or a similar question, we need to know some basic rules about galvanic cells and standard reduction potentials.
First of all, your strategy would be to find a trusted source or the table of standard reduction potentials. You would then need to find the half-equations for aluminum and gold reduction:


Since we have a galvanic cell, the overall reaction is spontaneous. A spontaneous reaction indicates that the overall cell potential should be positive.
Since one half-equation should be an oxidation reaction (oxidation is loss of electrons) and one should be a reduction reaction (reduction is gain of electrons), one of these should be reversed.
Thinking simply, if the overall cell potential would be obtained by adding the two potentials, in order to acquite a positive number in the sum of potentials, we may only reverse the half-equation of aluminum (this would change the sign of E to positive):
Notice that the overall cell potential upon summing is:

Meaning we obey the law of galvanic cells.
Since oxidation is loss of electrons, notice that the loss of electrons takes place in the half-equation of aluminum: solid aluminum electrode loses 3 electrons to become aluminum cation.
Temperature will raise and water will evaporate
Bohr changed the model of the atom by proposing that electrons travelled in circular orbits with specific energy levels.
From the ideal gas law
pv=nRT , n is therefore PV/RT
R is the
R is gas constant =62.364 torr/mol/k
P=500torr
V=4.00l
T=500+273=773k
n={(500 torr x 4.00l)/(62.364 x773k)}=0.041moles
the number of molecules=moles x avorgadro costant that is 6.022x10^23)
6.022 x 10^23) x0.041=2.469 x10^22molecules
Answer:
I'm probably wrong but I wanna say C.
Explanation: