
The ratio of
= - 34
How to solve such questions?
Such Questions can be easily solved just by some Algebraic manipulations and simplifications. We just try to make our expression in the form which question asks us. This is the best method to solve such questions as it will definitely lead us to correct answers. One such method is completing the square method.
Completing the square is a method that is used for converting a quadratic expression of the form
to the vertex form
. The most common application of completing the square is in solving a quadratic equation. This can be done by rearranging the expression obtained after completing the square:
, such that the left side is a perfect square trinomial
= 
=
(Completing Square method)
=
On comparing with the given equation we get
p = -
and q = 
∴
= 
= - 34
Learn more about completing the square method here :
brainly.com/question/26107616
#SPJ4
Answer:
find using calculator:)
Step-by-step explanation:
pie X (25 divided by 2) X (25 divided by 2) = answer
Answer:
8%
Step-by-step explanation:
To find the percent, divide 16 by 200, then multiply it by 100.
(16 / 200) x 100
0.08 x 100
= 8
So, 16 is 8% of 200
<h3>
Answer: choice C) 15</h3>
Simplify the left side to get
2(4+x)+(13+x)
2(4)+2(x) +13+x
8+2x+13+x
3x+21
------------
So the original equation
2(4+x)+(13+x) = 3x+k
turns into
3x+21 = 3x+k
------------
Subtract 3x from both sides
3x+21 = 3x+k
3x+21-3x = 3x+k-3x
21 = k
k = 21
-----------
If k = 21, then the original equation will have infinitely many solutions. This is because we will end up with 3x+21 on both sides, leading to 0 = 0 after getting everything to one side. This is a true equation no matter what x happens to be.
If k is some fixed number other than 21, then there will be no solutions. This equation is inconsistent (one side says one thing, the other side says something different). If k = 15, then
3x+21 = 3x+k
3x+21 = 3x+15
21 = 15 .... subtract 3x from both sides
The last equation is false, so there are no solutions here.
note: if you replace k with a variable term, then there will be exactly one solution.
Let's plug the values and see which couple satisfy the equation: since
, if we plug the values from the first option
we have

which is correct.
If we plug the values from the second option
we have

which is not correct
If we plug the values from the third option
we have

which is not correct
If we plug the values from the fourth option
we have

which is not correct
So, the answer is the first one.