Answer:
Explanation:
Examples are;
Ultraviolet light from sun.
Heat from a stove burner.
X-ray from an x-ray machine.
Alpha particle emit from a radio active decay of uranium.
Sound waves from your stereo.
Microwave from micro oven.
ultraviolet light from a black light.
Gamma radiations from a supernova.
AND MANY MORE.
Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c
Properties of electromagnetic radiation and photons. ... we find the types of energy that are lower in frequency ( and thus longer in wavelength) than visible light. Seeee
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)