6050 J is the kinetic energy at D
<u>Explanation:</u>
In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

Where,
m - mass of an object
v - velocity of the object
Here,
Given data:
m = 100 kg
v = 11 m/s
By substituting the given values in the above equation, we get

M1 v1 = (m1 + m2)v2.
All of the exponents should be lowered to the bottom right of the letters.
Answer:
See explanation below
Explanation:
The equation to use for this is the following:
dU = q + w
As the heat is being release, this value is negative, and same here happens with the work done, because it's in the surroundings.
Therefore the change in the energy would be:
dU = -2.59x10^4 - 6.46^4
dU = -9.05x10^4 kJ
It can be described as <span>a pure substance and an element. </span>