1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
3 years ago
9

A train is moving west with an initial velocity of 20m/s accelerates at 4m/s for 10 seconds during this time the train moves a d

istance ​
Physics
1 answer:
alex41 [277]3 years ago
4 0

Answer:

400m

Explanation:

From Newton's law of motion;

S = ut + 1/2 at2

Where U is initial velocity

a is acceleration

t is velocity hence;

S is distance covered

S = 20×10 + 1/2 × 4×(10)^2

= 200 + 200 = 400m

You might be interested in
The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.4 V is across it at a frequ
zzz [600]

Answer:

The value of the inductance is 1.364 mH.

Explanation:

Given;

amplitude current, I₀ = 200 mA = 0.2 A

amplitude voltage, V₀ = 2.4 V

frequency of the wave, f = 1400 Hz

The inductive reactance is calculated;

X_l = \frac{V_o}{I_o} \\\\X_l = \frac{2.4}{0.2} \\\\X_l =12 \ ohms

The inductive reactance is calculated as;

X_l = \omega L\\\\X_l = 2\pi fL\\\\L = \frac{X_l}{2 \pi f}

where;

L is the inductance

L = \frac{12}{2 \pi \times \ 1400} \\\\L = 1.364 \times \ 10^{-3} \ H\\\\L = 1.364 \ mH

Therefore, the value of the inductance is 1.364 mH.

7 0
3 years ago
Prečo je omnoho ľahšie udržať sa na hladine vody v mori ako v rieke
Vika [28.1K]

Answer:

please write in english language so that we can help you

6 0
3 years ago
QUESTION 3
Alisiya [41]

The force of frictions is opposed to relative motion.

The acceleration of the crate is approximately <u>2.937 m/s²</u>.

Reason:

The given parameters are;

The mass of the wood, m = 100 kg

The force which can move the wood, F = 588 N

Wood on wood static friction, \mu_s = 0.5

Wood on wood kinetic friction, \mu_k = 0.3

Solution;

The force of friction, F_f, acting when the crate is moving is given as

follows;

F_f = m × g × \mu_k

Where;

g = The acceleration due to gravity ≈ 9.81 m/s²

Therefore, we have;

F_f = 100 × 9.81 × 0.3 = 294.3

The force of friction, F_f = 294.3 N

The force with which the crate moves, F = 588 - 294.3 = 293.7

The force with which the crate moves, F = 293.7 N

Force = Mass, m × Acceleration, a

a = \dfrac{F}{m}

Therefore;

a = \dfrac{293.7 \ N}{100 \ kg} = 2.937

The acceleration of the crate, a ≈ <u>2.937 m/s²</u>.

Learn more about friction here:

brainly.com/question/94428

8 0
2 years ago
A spring with spring constant 33N/m is attached to the ceiling, and a 4.8-cm-diameter, 1.5kg metal cylinder is attached to its l
mylen [45]

Answer:

0.423m

Explanation:

Conversion to metric unit

d = 4.8 cm = 0.048m

Let water density be \who_w = 1000 kg/m^3

Let gravitational acceleration g = 9.8 m/s2

Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.

Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

F_s + F_b = W

Where F_s = kxN is the spring force, F_b = W_w = m_wg = \rho_w V_s g is the buoyancy force, which equals to the weight W_w of the water displaced by the submerged portion of the cylinder, which is the product of water density \rho_w, submerged volume V_s and gravitational constant g. W = mg is the weight of the metal cylinder.

kx + \rho_w V_s g = mg

The submerged volume would be the product of cross-section area and the submerged length x

V_s = Ax = \pi(d/2)^2x

Plug that into our force equation and we have

kx + \rho_w \pi(d/2)^2x g = mg

x(k + \rho_w g \pi d^2/4) = mg

x = \frac{m}{(k/g) + (\rho_w\pi d^2/4)} = \frac{1.5}{(33/9.8) + (100*\pi * 0.048^2/4)} = 0.423 m

6 0
3 years ago
What formula allows you to calculate the x component of a projectile?
Kay [80]

X-component of a projectile in flight =

(initial x-component)

plus

(initial horizontal component of velocity) x (flight time so far)

8 0
3 years ago
Read 2 more answers
Other questions:
  • (a) Calculate the self-inductance (in mH) of a 55.0 cm long, 10.0 cm diameter solenoid having 1000 loops.
    14·1 answer
  • The diagram shows a ramp with a toy car at the bottom. A string attached to the front of the car and the string goes over a pull
    12·1 answer
  • A 25 n object requires a 5.0 n to start moving over a horizontal surface. what is the coefficient of static friction?
    5·2 answers
  • If the total dissipated power is to be reduced by 10%, how much should the voltage be reduced to maintain the same leakage curre
    7·1 answer
  • What are groups 1,2 and 3 examples of on the periodic table
    15·1 answer
  • A jet starts at rest at the end of a runway and reaches a speed of 80 m/s in 20 s. What is its acceleration?
    12·1 answer
  • A point source emits 50.0 W of sound isotropically. A small microphone intercepts the sound in an area of 0.30 cm", 85 m from th
    12·1 answer
  • Why is it important to be able to trace the pole connection on a meter back to the same type of pole at the electrical source?
    14·1 answer
  • How can seismographs be used to predict hurricane intensity?
    7·1 answer
  • Please help with this :(
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!