Answer:
Position A/Position E
, 
Position B/Position D
,
, for 
Position C
, 
Explanation:
Let suppose that ball-Earth system represents a conservative system. By Principle of Energy Conservation, total energy (
) is the sum of gravitational potential energy (
) and translational kinetic energy (
), all measured in joules. In addition, gravitational potential energy is directly proportional to height (
) and translational kinetic energy is directly proportional to the square of velocity.
Besides, gravitational potential energy is increased at the expense of translational kinetric energy. Then, relative amounts at each position are described below:
Position A/Position E
, 
Position B/Position D
,
, for 
Position C
, 
Answer: the most potential energy == 5 kg book, 2 m from the ground= 98 Joules
Explanation:
potential energy = m g h
m = mass
g = acceleration due gravity = 9.8 m/s²
h = distance above ground
1. Pe₁ = 1 kg x 2 m x g = 2 g
2. Pe₂ = 5 kg x 2 m x g = 10 g = 10 kg m x 9,8 m/s² = 98 Joules
3. Pe₃ = 1 kg x 0,5 m x g = 0,5 g
4. Pe₄ = 5 kg x 0.5 m x g = 2,5 g
10 > 2,5 > 2 >0,5
Answer:
This is because spirit has a lower boiling point when compared to water
Explanation:
spirit has a lower boiling point when compared to water which means it has the capacity to pull more heat from your hand and also it can do this very fast. This is why our hand feels colder.
Answer:
The cup with 0.5L
Explanation:
To know what amount of water you take into account the specific heat of the water. The specific heat of water is:

Thus, 4186 J of energy are needed to icrease the temperature of 1 kg water in 1°C. Then, more grams of water will need more energy.
You have that one cup has 0.5 L and the other one has 750mL = 0.75L
The second cup of water will need more heat because the amount of water contained in the second cup is greater than in the first cup with 0.5L
Answer:
The acceleration of Abbie is half of the Zak's.
Explanation:
The centripetal acceleration of an object on a circular path is given by :

Two children are riding on a merry-go-round that is rotating with a constant angular speed. Let
is distance of Abbie from the merry-go-round and
is distance of Zak's from the merry-go-round. Acceleration of Abbie is :
...... (1)

Acceleration of Zak's is :
.......(2)

Dividing equation (1) and (2) we get :

So, the acceleration of Abbie is half of the Zak's.