1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
2 years ago
11

A new planet has been discovered and given the name Planet X . The mass of Planet X is estimated to be one-half that of Earth, a

nd the radius of Planet X is estimated to be twice that of Earth. The estimated mass and radius of Planet X are used to calculate the minimum escape speed, vc , for an object launched from the surface of the planet. If the actual mass and/or radius of the planet are slightly different from the estimated values.
Required:
How will the actual escape speed va for the surface of Planet X compare to vc?
Physics
1 answer:
harina [27]2 years ago
5 0

Answer:

    vₐ = v_c  ( \ 1 + \frac{1}{2} ( \frac{\Delta M}{M} - \frac{\Delta R}{R}) \ )

Explanation:

To calculate the escape velocity let's use the conservation of energy

starting point. On the surface of the planet

          Em₀ = K + U = ½ m v_c² - G Mm / R

final point. At a very distant point

         Em_f = U = - G Mm / R₂

energy is conserved

           Em₀ = Em_f

           ½ m v_c² - G Mm / R = - G Mm / R₂

           v_c² = 2 G M (1 /R -  1 /R₂)

if we consider the speed so that it reaches an infinite position R₂ = ∞

           v_c = \sqrt{\frac{2GM}{R} }

now indicates that the mass and radius of the planet changes slightly

            M ’= M + ΔM = M ( 1+ \frac{\Delta M}{M} )

            R ’= R + ΔR = R ( 1 + \frac{\Delta R}{R} )

we substitute

           vₐ = \sqrt{\frac{2GM}{R} } \  \frac{\sqrt{1+ \frac{\Delta M}{M} } }{ \sqrt{1+ \frac{ \Delta R}{R} } }

         

let's use a serial expansion

           √(1 ±x) = 1 ± ½ x +…

we substitute

         vₐ = v_ c ( (1 + \frac{1}{2}  \frac{\Delta M}{M} )  \ ( 1 - \frac{1}{2}  \frac{\Delta R}{R} ))

we make the product and keep the terms linear

        vₐ = v_c  ( \ 1 + \frac{1}{2} ( \frac{\Delta M}{M} - \frac{\Delta R}{R}) \ )

You might be interested in
A space probe is fired as a projectile from the Earth's surface with an initial speed of 2.05 104 m/s. What will its speed be wh
Elanso [62]

Answer:

The value is  v  =  2.3359 *10^{4} \ m/s

Explanation:

From the question we are told that

  The  initial speed is u =  2.05 *10^{4} \  m/s

 Generally the total energy possessed by the space probe when on earth is mathematically represented as

             T__{E}} =  KE__{i}} +  KE__{e}}

Here  KE_i is the kinetic energy of the space probe due to its initial speed which is mathematically represented as

          KE_i =   \frac{1}{2}  *  m  *  u^2

=>       KE_i =   \frac{1}{2}  *  m  *  (2.05 *10^{4})^2

=>       KE_i =  2.101 *10^{8} \ \ m \ \ J

And  KE_e is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

       KE_e =  \frac{1}{2}  *  m *  v_e^2

Here v_e is the escape velocity from earth which has a value v_e =  11.2 *10^{3} \  m/s

=>    KE_e =  \frac{1}{2}  *  m *  (11.3 *10^{3})^2

=>    KE_e =  6.272 *10^{7} \  \  m  \ \   J

Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

        KE_p =  \frac{1}{2}  *  m *  v^2

Generally from the law energy conservation we have that

        T__{E}} =  KE_p

So

       2.101 *10^{8}  m  +  6.272 *10^{7}  m  =   \frac{1}{2}  *  m *  v^2

=>     5.4564 *10^{8} =   v^2

=>     v =  \sqrt{5.4564 *10^{8}}

=>     v  =  2.3359 *10^{4} \ m/s

4 0
2 years ago
QUESTION 1
Sveta_85 [38]

distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years

7 0
3 years ago
Iron ball sinks in water but not in mercury. Why?
Zigmanuir [339]

Answer:

mercury is more dense

Explanation:

8 0
3 years ago
Read 2 more answers
Why are so many people using this on thing like a freaking dating app???
Westkost [7]

Answer:

this is were you get everything

Explanation:

4 0
3 years ago
Read 2 more answers
WallyGPX accelerates from 0 m/s to 8 m/s in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car
olga nikolaevna [1]

My Phone is +2348181686682

4 0
3 years ago
Other questions:
  • What would happen if there were no action-reaction forces in effect and you tried walking down a sidewalk
    11·1 answer
  • How far can a person run in 15 minutes if he or she runs at an average speed of 16 km/hr
    13·1 answer
  • An airplane is flying through the air at a speed of 150 mph at a heading of 60 degrees. if the wind is blowing at 20 mph from th
    7·1 answer
  • I really need help asap.
    10·2 answers
  • You are looking at yourself in a plane mirror, a distance of 3 meters from the mirror. Your brain interprets what you are seeing
    5·1 answer
  • This problem uses the same concepts as Multiple-Concept Example 17, except that kinetic, rather than static, friction is involve
    7·1 answer
  • Two charged particles are a distance of 1.62 m from each other. One of the particles has a charge of 7.10 nc, and the other has
    9·1 answer
  • If u accomplished 10,000 newton meters of work how much work did you do in units of joules
    14·1 answer
  • Explain how neutrons enable a nuclear chain reaction to take place. (2)
    11·2 answers
  • An object is released from height of 17m. <br> The object will hit the ground approximately in
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!