Answer:
Hence the pressure is 
Explanation:
Given data
Q=1500 J system gains heat
ΔV=- 0.010 m^3 there is a decrease in volume
ΔU= 4500 J internal energy decrease
We know work done is
W= Q- ΔU
=1500-4500= -3000 J
The change in the volume at constant pressure is
ΔV= W/P
there fore P = W/ΔV= -3000/-0.01= 3×10^5
Hence the pressure is 
ENGLISH:
It distinguishes between the fermions, which are particles of matter, and the bosons, which carry forces. The matter particles include six quarks and six leptons. The six quarks are called the up, down, charm, strange, top and bottom quark. ... All of these matter particles fall into three “generations.”
SPANISH:
Distingue entre los fermiones, que son partículas de materia, y los bosones, que transportan fuerzas. Las partículas de materia incluyen seis quarks y seis leptones. Los seis quarks se denominan quark arriba, abajo, encanto, extraño, superior e inferior. ... Todas estas partículas de materia se dividen en tres "generaciones".
Answer:
<h2>Total thermal energy for all air molecules is 59.54 J</h2>
Explanation:
As we know that the ball comes to rest finally so here we can say that
initial total potential energy of the ball is transferred to the air molecules
So here we have


So here we have

So all the gravitational potential energy of the ball will convert into thermal energy of air molecules which is equal to 59.54 J
Answer:
Force, F = 44 N
Explanation:
Given that,
Initial speed of the football, u = 0
Final speed, v = 15 m/s
The time of contact of the ball, t = 0.15 s
The mass of football, m = 0.44 kg
We need to find the average force exerted on the ball. It is given by the formula as :

So, the average force exerted on the ball is 44 N. Hence, this is the required solution.
<span>D is the correct answer. If you wanted to know how fast a tiger can run, you would use meters and seconds. Meters will tell you the distance that the tiger ran and seconds will tell you how quickly the tiger ran the distance.</span>