The speed of an object in a mass-spring system is given under the function

Here,
m = mass
k = Spring constant
A = Amplitude
x = Position
When the position is at the equilibrium point (x = 0), the speed will be maximum, and could even be expressed as

So the correct answer is B.
Answer:
0.004 m
Explanation:
For light passing through a single slit, the position of the nth-minimum in the diffraction pattern is given by

where
is the wavelength
D is the distance of the screen from the slit
d is the width of the slit
Therefore, the width of the central maximum is equal to twice the value of y for n=1 (first minimum):

where we have
is the wavelength
D = 2.0 m is the distance of the screen
is the width of the slit
Substituting, we find

-7 2/3 or -23 / 3
Hope this helped :)
Positive charge you gave the lines pointing away, negative charge is pointing toward. Don’t have a photo so I can’t fill in the blanks BUT I can tell you the logic
Answer: the average position of all the parts of the system, weighted according to their masses.
Explanation: