Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Answer:
gwbwhsusjhsbdsbdiddushsbdbdjsisshbwwiwjwbssidhdbdhdjdidjdbsbd
<span>Chemical reaction: CH</span>₃COO⁻(aq) + H⁺(aq) ⇄ CH₃COOH(aq).
H⁺ is from HNO₃: HNO₃ → H⁺ + NO₃⁻.
<span>A buffer can
be defined as a substance that prevents the pH of a solution from changing by
either releasing or absorbing H</span>⁺ in a
solution.
Buffer is a solution
that can resist pH change upon the addition of an acidic or basic components
and it is able to neutralize small amounts of added acid or base, pH of
the solution is relatively stable.
<span>The answer is anions. Cations are positively-charged ions (in this case K+) while anions are negatively-charged ions (in this case Cl-). The ions attract each other through electrostatic charges and arrange themselves in an ordered fashion to form a lattice</span>