1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
8

8. Which of the following is a characteristic of no-till farming?

Engineering
1 answer:
Leviafan [203]3 years ago
8 0
B. Optimizes conditions for seed germination
You might be interested in
The advantages of solar cells include all of the following, except a.moderate net energy yield b.little or no direct emissions o
Xelga [282]

Answer:

C

Explanation:

One of the disadvantages of solar cells is that electricity storage systems are not readily available. Excess energy generated by the solar panels are wasted except they are stored by solar batteries for later use. There are various systems for storing electricity from solar cells apart from solar batteries which is the common storage system. An example of another electricity storage system for solar cell is using the water electrolyzer to store solar energy which can be used to later generate hydroelectricity.

Advantages of a solar cell includes Renewable energy, Economy-friendly and environmental-friendly energy and good durability

6 0
3 years ago
Metal wireways are sheet metal troughs with _____________ for housing and protecting electrical conductors and cable.
levacccp [35]

Answer:

Metal wireways are sheet metal "U"s with removable housing for protecting electrical equipment, wires, and cables.

Explanation:

These are especially used to run wire in manufacturing environments.

5 0
2 years ago
g Let the charges start infinitely far away and infinitely far apart. They are placed at (6 cm, 0) and (0, 3 cm), respectively,
irina1246 [14]

Answer:

a) V =10¹¹*(1.5q₁ + 3q₂)

b) U = 1.34*10¹¹q₁q₂

Explanation:

Given

x₁ = 6 cm

y₁ = 0 cm

x₂ = 0 cm

y₂ = 3 cm

q₁ = unknown value in Coulomb

q₂ = unknown value in Coulomb

A) V₁ = Kq₁/r₁

where   r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m

V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁

V₂ = Kq₂/r₂

where   r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m

V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂

The electric potential due to the two charges at the origin is

V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)

B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows

U = Kq₁q₂/r₁₂

where

r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m

then

U = 9*10⁹q₁q₂/(3√5/100)

⇒ U = 1.34*10¹¹q₁q₂

5 0
3 years ago
At a certain location, wind is blowing steadily at 5 mph. Suppose that the mass density of air is 0.0796 lbm/ft3 and determine t
nlexa [21]

Answer:

The radius of a wind turbine is 691.1 ft

The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m

Explanation:

Given;

power generation potential (PGP) = 1000 kW

Wind speed = 5 mph = 2.2352 m/s

Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³

Radius of the wind turbine r = ?

Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²

Wind energy per unit mass of air = 2.517 J/kg

PGP = mass flow rate * energy per unit mass

PGP = ρ*A*V*e

PGP = \rho *\frac{\pi r^2}{2} *V*e  \\\\r^2 = \frac{2*PGP}{\rho*\pi *V*e} , r=\sqrt{ \frac{2*PGP}{\rho*\pi *V*e}} = \sqrt{ \frac{2*10^6}{1.275*\pi *2.235*2.517}}

r = 210.64 m = 691.1 ft

Thus, the radius of a wind turbine is 691.1 ft

PGP = CVᵃ

For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)

Let C = 0.4

PGP = Cvᵃ

take log of both sides

ln(PGP) = a*ln(CV)

a = ln(PGP)/ln(CV)

a = ln(1000)/ln(0.4 *2.2352) = 7.73

The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m

5 0
2 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
2 years ago
Other questions:
  • Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carb
    12·1 answer
  • Bulk wind shear is calculated by finding the vector difference between the winds at two different heights. Using the supercell w
    12·1 answer
  • Under which of the following conditions is a Type B-1 Fire extinguisher required onboard a motorized vessel?
    14·2 answers
  • 1. Which of the following is the ideal way to apply pressure onto pedals?
    14·2 answers
  • 7. A single-pole GFCI breaker is rated at
    9·1 answer
  • g Asbestos is a fibrous silicate mineral with remarkably high tensile strength. But is no longer used because airborne asbestos
    5·1 answer
  • All people<br><br><br>id 5603642259 pd 123456<br>on z o o m​
    15·1 answer
  • In a typical American building, most modern lighting systems must use what voltage?
    12·1 answer
  • Technician A says that synthetic blend oil has the same service life as that of full synthetic oils. Technician B says that conv
    6·1 answer
  • Two technicians are discussing a vehicle that cranks slowly when the key is turned to the crank position. The positive battery t
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!