Answer:
The MATLAB Code for this PI Controller will be:
Kp = 350;
Ki = 300;
Kd = 50;
C = pid(Kp,Ki,Kd)
T = feedback(C*P,1);
t = 0:0.01:2;
step(T,t)
Explanation:
When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.
Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to reduce the overshoot
Add an integral control to reduce the steady-state error
Adjust each of the gains $K_p$, $K_i$, and $K_d$ until you obtain a desired overall response.
The further explanation is attached in the Word File.
Answer:
Pressure = 115.6 psia
Explanation:
Given:
v=800ft/s
Air temperature = 10 psia
Air pressure = 20F
Compression pressure ratio = 8
temperature at turbine inlet = 2200F
Conversion:
1 Btu =775.5 ft lbf,
= 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²
Air standard assumptions:
= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R
k= 1.4
Energy balance:
As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible
hence 

= 20+460 = 480°R
= 533.25°R
Pressure at the inlet of compressor at isentropic condition

=
= 14.45 psia
Answer:
V = 0.5 m/s
Explanation:
given data:
width of channel = 4 m
depth of channel = 2 m
mass flow rate = 4000 kg/s = 4 m3/s
we know that mass flow rate is given as

Putting all the value to get the velocity of the flow


V = 0.5 m/s
Answer:
формула pq sry i dont speak russian lol but thats the solution of the equation
Answer:
18 kJ
Explanation:
Given:
Initial volume of air = 0.05 m³
Initial pressure = 60 kPa
Final volume = 0.2 m³
Final pressure = 180 kPa
Now,
the Work done by air will be calculated as:
Work Done = Average pressure × Change in volume
thus,
Average pressure =
= 120 kPa
and,
Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³
Therefore,
the work done = 120 × 0.15 = 18 kJ