1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
14

An ideal gas is contained in a closed assembly with an initial pressure and temperature of

Engineering
1 answer:
adell [148]3 years ago
3 0

Answer:

Two identical containers each of volume V 0 are joined by a small pipe. The containers contain identical gases at temperature T 0 and pressure P 0 .One container is heated to temperature 2T 0 while maintaining the other at the same temperature. The common pressure of the gas is P and n is the number of moles of gas in container at temperature 2T 0

Explanation:

You might be interested in
assume a five layer network model. There are 700 bytes of application data. There is a 20 bye header at the transport layer, a 2
amm1812

Answer: The overhead percentage is 7.7%.

Explanation:

We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.

We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.

So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:

OH % = (58 / 758) * 100 = 7.7 %

4 0
2 years ago
The difference between an initial condition and a boundary condition for conduction in a solid is:___________
leva [86]

Answer:

c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.

Explanation:

Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.

In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.

Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.

Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.

7 0
2 years ago
Write the following decorators and apply them to a single function (applying multiple decorators to a single function): 1. The f
natita [175]

Answer:

Complete question is:

write the following decorators and apply them to a single function (applying multiple decorators to a single function):

1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”

2. The decorator will return the wrapper per usual.

3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.

4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.

5. Apply both decorators (by @ operator to greetings()).

6. Invoke the greetings() function and capture the result.

Code :

def strong_decorator(func):

def func_wrapper(name):

return "<strong>{0}</strong>".format(func(name))

return func_wrapper

def em_decorator(func):

def func_wrapper(name):

return "<em>{0}</em>".format(func(name))

return func_wrapper

@strong_decorator

@em_decorator

def Greetings(name):

return "{0}".format(name)

print(Greetings("Hello"))

Explanation:

5 0
3 years ago
-Mn has a cubic structure with a0 = 0.8931 nm and a density of 7.47 g/cm3. -Mn has a different cubic structure, with a0 = 0.63
Fudgin [204]

Answer:

The percentage volume change is -3.0%

Explanation: We are to determine the percentage change that will occurs is alpha-Mn is transformed to beta-Mn

Value are defined as;

Cubic structure (a0) for alpha-Mn = 0.8931nm = 0.8931e-9m = 7.1236e-28cm3

Cubic structure (a0) for beta-Mn = 0.6326nm = 0.6326e-9m = 2.5316e-28cm3

Density of alpha-Mn = 7.47g/cm3

Density of beta-Mn = 7.26g/cm3

Atomic weight of Mn = 54.938g/mol

Atomic radius of Mn = 0.112nm

STEP1: CALCULATE THE ATOM NUMBER PER CELL IN THE ALPHA-Mn;

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight ) × 100000

(7.47× 7.1236e-28 × 6.02e23) ÷ 54.938 = 58.31

Therefore the number of Atom in alpha-Mn is 58.31 atom per cell

STEP2: CALCULATE THE NUMBER OF ATOM PER CELL IN THE BETA-Mn

Atom per cell = (density × cubic structure × Avogadro's constant) ÷ (atomic weight) × 1000000

(7.26 × 2.5316e-28 × 6.02e23) ÷ 54.938 = 20.14

Therefore the number of Atom in beta-Mn is 20.14 atom per cell

STEP3: CALCULATE THE PERCENTAGE VOLUME OF ALPHA-Mn AND BETA-Mn

V% = [(volume of atom × number of atom per cell) ÷ volume of unit cell] × 1000

For Alpha-Mn:

[(1.4049e-30 × 58.31) ÷ 7.1236e-28] × 1000 = 114.998%

For Beta-Mn:

[(1.4049e-30 × 20.14) ÷ 2.5316e-28] × 1000 = 111.766%

STEP4: CALCULATE THE CHANGE IN PERCENTAGE VOLUME FOR ALPHA TO TRANSFORM TO BETA

change = final state - initial state

Therefore;

Change = 111.766 - 114.998 = -3.23%

Therefore for a transformation of Alpha-Mn to Beta-Mn they will be a decrease in volume

3 0
2 years ago
Technician A says that rear-wheel drive vehicles usually get better traction than front-wheel drive vehicles. Technician B says
Alex Ar [27]
Both a and b

Disclaimer! (90% sure)
6 0
2 years ago
Other questions:
  • To water his lawn, a homeowner uses two hoses. One connects to the faucet, the other to the end of the first hose to make the ho
    14·1 answer
  • What is an ip<br> Number
    12·1 answer
  • A 179 ‑turn circular coil of radius 3.95 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicu
    11·1 answer
  • Convert the unit Decimeter (dm) into Micrometer (um).
    8·1 answer
  • This elementary problem begins to explore propagation delayand transmission delay, two central concepts in data networking. Cons
    6·1 answer
  • An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplie
    15·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • Hello, I have a question, I would be glad if you can help.
    5·1 answer
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    8·1 answer
  • Which option identifies why Ethan’s skills are valuable to his team in the following scenario?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!