Answer:
The tangential speed of the tack is 8.19 m/s.
Explanation:
The wheel rotates 3.37 times a second that means wheel complete 3.37 revolutions in a second. Therefore, the angular speed ω of the wheel is given as follows:

Use the relation of angular speed with tangential speed to find the tangential speed of the tack.
The tangential speed v of the tack is given by following expression
v = ω r
Here, r is the distance to the tack from axis of rotation.
Substitute 21.174 rad/s for ω, and 0.387 m for r in the above equation to solve for v.
v = 21.174 × 0.387
v = 8.19m/s
Thus, The tangential speed of the tack is 8.19 m/s.
As one moves farther and farther from the Sun, the distance between adjacent planets is greater.
The answer would be 5.6x10^5
Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2