Answer: Sanjay can burn 100 more calories every 30 minutes if he chooses to lift weights instead of watching tv
Explanation: 133-33= 100 calories (says in article and i just answered it)
Answer:
Yes, the energy is not simply the sum of the individual binding energies at each site, it is the product of energy at each binding site of hemoglobin.
Explanation:
Myoglobin and hemoglobin are two different cells. Myoglobin binds only one oxygen while the hemoglobin has the ability to binds four oxygen atoms at its four sides. Myoglobin present in muscle tissue only while hemoglobin is present in the whole body. Oxyhemoglobin is formed when oxygen binds with hemoglobin cell. This oxygen is take to all cells and energy is released due to the breakdown of glucose molecules with this oxygen.
Overcurrent protective devices are normally installed in a branch circuit from where the conductors receive their supply.
<h3>What is resistance?</h3>
Resistance is the obstruction of electrons in an electrically conducting material. The mathematical relation for resistance can be understood with the help of the empirical relation provided by Ohm's law.
V=IR
V is the voltage,I is the current and R is the resistance
The vercurrent protective devices are normally installed in a branch circuit from where the conductors receive their supply.
Thus, In a branch circuit, overcurrent safety devices are often located from where the conductors get their supply.
Learn more about resistance from here, refer to the link;
brainly.com/question/14547003
#SPJ4
Answer:
Glucose and Oxygen
Explanation:
Cellular respiration is the process whereby cells derives energy by the use of glucose and oxygen.
Organisms that use cellular respiration to produce their energy are known as heterotophs. They derive the glucose from food materials obtained from plant sources. They use the oxygen from the environment to liberate energy from the glucose obtained from feeding on plant materials.
Cellular respiration can be simply expressed as shown below:
GLUCOSE + OXYGEN → CO₂ + H₂O + ATP
The reactants are glucose and oxygen.
The products are CO₂, water and ATP