Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Answer:
(D) (CH3CH2)2NH
Explanation:
In order to decide which base is strongest we need to calculate its PKb
PKb = -log [Kb]
A large Kb value and small PKb value gives the strongest base
Compound Kb PKb
(A) C6H5NH2 - 4 x 10^-10 9.349
(B) NH3 1.76x 10^-5 4.754
(C) CH3NH2 4.4x 10^-4 3.357
(D) (CH3CH2)2NH 8.6x 10^-4 3.066
(E) C5H5N 1.7x10^-9 8.77
Clearly (CH3CH2)2NH is the strongest base.
Assuming that nitrogen gas is ideal, we can use the equation PV = nRT to relate first conditions to the second condition. At constant temperature, pressure and volume are indirectly related as follows:
P = k / V
k is equal nRT
P1V1 = P2V2
P2 = 101.325 ( 4.65 ) / .480 = 981.586 kPa
0.83 m/s seems the correct answer, hope it helps