Answer:
U= 238g/mol
U2O5= 556g/mol
Explanation:
Since U= 238
O=16
U3O5= 2(238)+3(16)=556g/mol
Answer:
1.31x10⁻³ moles of H₂
Explanation:
This is the equation:
Mg(s) + 2H₂O (g) → Mg(OH)₂ (aq) + H₂(g)
Ratio is 1:1, so 1 mol of Mg is needed to produce 1 mol of H₂
Mass / Molar mass = Mol
0.032 g / 24.3 g/m = 1.31x10⁻³ moles
1.31x10⁻³ moles of H₂(g)
Answer:
17,890 J
Explanation:
The amount of heat released by a gaseous substance when it condenses is given by the formula

where
n is the number of moles of the substance
is the latent heat of vaporization
The formula can be applied if the substance is at its vaporization temperature.
In this problem, we have:
n = 0.440 mol is the number of moles of steam
is the latent heat of vaporization of water
And the steam is already at 100C, so we can apply the formula:

Answer:
There are 6.022 × 1023 atoms of potassium in every mole of potassium. Since one mole of KOH contains one mole of K, the answer is 6.022×1023 atoms of K.
Explanation:
By the second law of thermodynamics:
Heat can not spontaneously flow from cold regions to hot regions without external work being performed on a system.
Heat transfer is the passage of thermal energy from a hot ( t B = 80° C ) to a colder body ( t A = 40° C ).
Answer: B ) Heat flows from object B to object A.