To be honest I really don’t know sorry
Answer:
ΔH°r = -483.64 kJ
Explanation:
Let's consider the following balanced equation.
2 H₂(g) + O₂(g) ⇒ 2 H₂O(g)
We can calculate the standard enthalpy change of the reaction (ΔH°r) using the following expression.
ΔH°r = ∑ΔH°f(p) × np - ∑ΔH°f(r) × nr
where
ΔH°f: standard heat of formation
n: moles
p: products
r: reactants
ΔH°r = ΔH°f(H₂O(g)) × 2 mol - ΔH°f(H₂(g)) × 2 mol - ΔH°f(O₂(g)) × 1 mol
ΔH°r = (-241.82 kJ/mol) × 2 mol - 0 kJ/mol × 2 mol - 0 kJ/mol × 1 mol
ΔH°r = -483.64 kJ
Answer:
Solid gallium is a blue-gray metal with orthorhombic crystalline structure; very pure gallium has a stunning silvery color. Gallium is solid at normal room temperatures, but as well as mercury, cesium, and rubidium it becomes liquid when heated slightly
Explanation:
gallium is like water it freezes to turn solid!
...or like Bruce lee get it?
Answer:
5 × 10^-4 L
Explanation:
The equation of the reaction is;
2KClO3 = 2KCl + 3O2
Number of moles of KClO3 = 13.5g/122.5 g / mol = 0.11 moles
From the stoichiometry of the reaction;
2 moles of KClO3 yields 3 moles of O2
0.11 moles of KClO3 yields 0.11 × 3/2 = 0.165 moles of oxygen gas
From the ideal gas equation;
PV= nRT
P= 85.4 × 10^4 KPa
V=?
n= 0.165
R= 8.314 J K-1 mol-1
T= 40+273 = 313K
V= 0.165 ×8.134 × 313/85.4 × 10^4
V=429.4/85.4 × 10^4
V= 5 × 10^-4 L
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882