Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
The ionic formula of sodium oxide would be Na20
I think you must do dot and cross diagrams but im not sure at all
<u>Answer and Explanation:</u>
Mercury combines with sulfur as follows -
Hg + S = HgS
Hg = 200,59
S = 32,066 Therefore 1.58 g of Hg will react with -
1.58 multiply with 32,066 divide by 200,96 of sulfur.
= 0.25211 g S
This will form 1.58 + 0.25211 g HgS = 1.83211 g HgS
The amount of S remaining = 1.10 - 0.25211 = 0.84789 g
The answer is 0784 the second one