The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
Answer:
H₂SO₄
Explanation:
Given data:
Number of moles of H₂SO₄ = 15 mol
Number of moles of Fe = 13 mol
Which reactant is limiting reactant = ?
Solution:
Chemical equation:
3H₂SO₄ + 2Fe → Fe₂(SO₄)₃ + 3H₂
now we will compare the moles reactant with product.
H₂SO₄ : Fe₂(SO₄)₃
3 : 1
15 : 1/3×15 = 5
H₂SO₄ : H₂
3 : 3
15 : 15
Fe : Fe₂(SO₄)₃
2 : 1
13 : 1/2×13 = 6.5
Fe : H₂
2 : 3
13 : 3/2×13 = 19.5
Number of moles of product formed by H₂SO₄ are less thus it will act as limiting reactant.
Answer:
1) correct
2) incorrect
3) correct
4)incorrect
Explanation:
1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.
A Bronsted-Lowry acid is a substance that donates a proton H⁺
Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.
2)A Lewis acid not necessarily needs to have a proton to be donated.
3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.
4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.
NH4+ and NH3 are an acid-conjugate base pair, since NH4+ is an acid, while NH3 is its conjugate base (since it is without the H+).
H2O and H3O+ can also be considered an acid-conjugate base pair, since H3O+ is an acid, while H2O would be its conjugate base. (But if only 1 answer is to be selected, it should be the NH4+ and NH3)
NH4+ and H3O+ are both acids, and both H2O and NH3 can be considered bases.
Answer:
The concentration the student should write down in her lab is 2.2 mol/L
Explanation:
Atomic mass of the elements are:
Na: 22.989 u
S: 32.065 u
O: 15.999 u
Molar mass of sodium thiosulfate, Na2S2O3 = (2*22.989 + 2*32.065 + 3*15.999) g/mol = 158.105 g/mol.
Mass of Na2S2O3 taken = (19.440 - 2.2) g = 17.240 g.
For mole(s) of Na2S2O3 = (mass taken)/(molar mass)
= (17.240 g)/(158.105 g/mol) = 0.1090 mole.
Volume of the solution = 50.29 mL = (50.29 mL)*(1 L)/(1000 mL)
= 0.05029 L.
To find the molar concentration of the sodium thiosulfate solution prepared we use the formula:
= (moles of sodium thiosulfate)/(volume of solution in L)
= (0.1090 mole)/(0.05029 L)
= 2.1674 mol/L