Answer:
Step-by-step explanation:
First you have to find the slope
M= y2-y1/ x2-x1.
6-4 / 8-7 = 2/1 or 2
Then you pick one set of coordinates and plug the information into the formula. It doesn't matter which set you use as long as you plug the information in correctly.
I will choose (6,4)
Slope intercept formula is y-y1 =m(x-x1)
Y-4=2(x-6)
Then you simplify.
Y-4=2x-12
+4. +4
Y=2x-8 is your solution.
Answer: no
Step-by-step explanation: here are all the ratios equivalent to 18:6 18 : 636 : 1254 : 1872 : 2490 : 30108 : 36126 : 42144 : 48162 : 54180 : 60198 : 66216 : 72234 : 78252 : 84270 : 90288 : 96306 : 102324 : 108342 : 114360 : 120378 : 126396 : 132414 : 138432 : 144450 : 150468 : 156486 : 162504 : 168522 : 174540 : 180558 : 186576 : 192594 : 198612 : 204630 : 210648 : 216666 : 222684 : 228702 : 234720 : 240738 : 246756 : 252774 : 258792 : 264810 : 270828 : 276846 : 282864 : 288882 : 294900 : 300918 : 306936 : 312954 : 318972 : 324990 : 3301008 : 3361026 : 3421044 : 3481062 : 3541080 : 3601098 : 3661116 : 3721134 : 3781152 : 3841170 : 3901188 : 3961206 : 4021224 : 4081242 : 4141260 : 4201278 : 4261296 : 4321314 : 4381332 : 4441350 : 4501368 : 4561386 : 4621404 : 4681422 : 4741440 : 4801458 : 4861476 : 4921494 : 4981512 : 5041530 : 5101548 : 5161566 : 5221584 : 5281602 : 5341620 : 5401638 : 5461656 : 5521674 : 5581692 : 5641710 : 5701728 : 5761746 : 5821764 : 5881782 : 5941800 : 600
https://goodcalculators.com/ratio-calculator/
© 2015-2021 goodcalculators.com
Answer:
f(x) = 
Step-by-step explanation:
Let the equation of the give cubic function is,
f(x) = p(x - a)(x - b)(x - c)
Here, a, b, c and d are the x-intercepts of the given graph.
Since, x-intercepts given in the graph are x = -5, 1 and 4,
Equation of the curve will be,
f(x) = p(x + 5)(x - 1)(x - 4)
Since, the graph of this function passes through (2, -2) also
-2 = p(2 + 5)(2 - 1)(2 - 4)
-2 = -p(14)
p = 
p = 
Therefore, equation will be,
f(x) = 
Answer:
Part 1)
----->
Part 2)
----> 
Part 3)
----> All real numbers
Part 4)
----> 
Step-by-step explanation:
we know that
The domain of a function is the set of all possible values of x
Part 1) we have

we know that
In a quotient the denominator cannot be equal to zero
so
For the value of x=0 the function is not defined
therefore
The domain is

Part 2) we have

we know that
In a quotient the denominator cannot be equal to zero
so
For the value of x=-4 the function is not defined
therefore
The domain is

Part 3) we have

Applying the distributive property

This is a vertical parabola open upward
The function is defined by all the values of x
therefore
The domain is all real numbers
Part 4) we have

we know that
In a quotient the denominator cannot be equal to zero
so
Equate the denominator to zero

Remember that

(
The solution is x=-4
so
For the value of x=-4 the function is not defined
therefore
The domain is
