1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
11

Describe an example of newton’s 3rd law of motion

Physics
1 answer:
professor190 [17]3 years ago
8 0

Answer:

For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.

Explanation:

You might be interested in
A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T.
sineoko [7]

Answer:10842.33m/s

Explanation:

F=qvBsine

V=f/(qBsine)

V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)

V=10842.33m/s

5 0
3 years ago
A sinusoidal transverse wave of amplitude ym = 8.4 cm and wavelength = 5.3 cm travels on a stretched cord. Find the ratio of the
Scilla [17]

Answer:

The ratio is 9.95

Solution:

As per the question:

Amplitude, y_{m} = 8.4\ cm

Wavelength, \lambda = 5.3\ cm

Now,

To calculate the ratio of the maximum particle speed to the speed of the wave:

For the maximum speed of the particle:

v_{m} = y_{m}\times \omega

where

\omega = 2\pi f = angular speed of the particle

Thus

v_{m} = 2\pi fy_{m}

Now,

The wave speed is given by:

v = f\lambda

Now,

The ratio is given by:

\frac{v_{m}}{v} = \frac{2\pi fy_{m}}{f\lambda}

\frac{v_{m}}{v} = \frac{2\pi \times 8.4}{5.3} = 9.95

8 0
4 years ago
Consider this situation: A baseball player dives head-first
siniylev [52]
Of the forces listed I think the force of him diving and sliding across the infield acted on the player.

I think so because the slowing down was a result of an action, and I don’t think that should count as An action when it is the result of an action. However, the act of diving head-first into second base and sliding across the infield are independent actions and will cause friction, which will act upon the player.
7 0
3 years ago
Two separate disks are connected by a belt traveling at 5m/s. Disk 1 has a mass of 10kg and radius of 35cm. Disk 2 has a mass of
pantera1 [17]

Explanation:

Given that,

Linear speed of both disks is 5 m/s

Mass of disk 1 is 10 kg

Radius of disk 1 is 35 cm or 0.35 m

Mass of disk 2 is 3 kg

Radius of disk 2 is 7 cm or 0.07 m

(a) The angular velocity of disk 1 is :

v=r_1\omega_1\\\\\omega_1=\dfrac{v}{r_1}\\\\\omega_1=\dfrac{5}{0.35}\\\\\omega_1=14.28\ rad/s

(b) The angular velocity of disk 2 is :

v=r_2\omega_2\\\\\omega_2=\dfrac{v}{r_2}\\\\\omega_2=\dfrac{5}{0.07}\\\\\omega_2=71.42\ rad/s

(c) The moment of inertia for the two disk system is given by :

I=I_1+I_2\\\\I=\dfrac{1}{2}m_1r_1^2+\dfrac{1}{2}m_2r_2^2\\\\I=\dfrac{1}{2}(m_1r_1^2+m_2r_2^2)\\\\I=\dfrac{1}{2}\times (10\times (0.35)^2+3\times (0.07)^2)\\\\I=0.619\ kg-m^2

Hence, this is the required solution.

6 0
3 years ago
1. A piece of metal weighs 50.0 N in air, 36.0 N in water, and 41.0 N in an unknown
denis23 [38]

Answer:

a) 3.37 x 10^{3} kg/m^3

b) 6.42kg/m^{3}

Explanation:

a) Firstly we would calculate the volume of the metal using it`s weight in air and water , after finding the weight we would find the density .

Weight of metal in air = 50N = mg implies the mass of metal is 5kg.

Now the difference of weight of the metal in air and water = upthrust acting on it = volume (metal) p (liquid) g = V (1000)(10) = 14N. So volume of metal piece = 14 x 10^{-4}  kg/m^{3}. So density of metal = mass of metal / volume of metal = 5 / 14 x 10^{-4}  kg/m^{3} = 3.37 x 10^{3} kg/m^3

b) Water exerts a buoyant force to the metal which is 50−36 = 14N, which equals the weight of water displaced. The mass of water displaced is 14/10 = 1.4kg Since the density of water is 1kg/L, the volume displaced is 1.4L. Hence, we end up with 3.57kg/l. Moreover, the unknown liquid exerts a buoyant force of 9N. So the density of this liquid is 6.42kg/m^{3}

3 0
3 years ago
Other questions:
  • The waves shown below represent sound waves. Which of the waves would have the highest-pitched sound?
    5·1 answer
  • Aliens come blasting into our solar system and wipe out everything but the Sun, the Earth, and Jupiter. Discuss (conceptually) w
    10·1 answer
  • A wire of resistance 5.9 Ω is connected to a battery whose emf ε is 4.0 V and whose internal resistance is 1.2 Ω. In 2.9 min, ho
    9·1 answer
  • What is the difference between mass and weight?
    15·1 answer
  • A sine wave with an rms value of 10.6 v is riding on a dc level of 24 v. what are the maxi- mum and minimum values of the result
    6·1 answer
  • In the oscillating spring ball system, what is true about the energy of the ball when it is located at its amplitude? Select the
    7·1 answer
  • Consider a makeup mirror that produces a magnification of 1.5 when a person's face is 11.5 cm away what is the focal length of t
    8·1 answer
  • What is the sound intensity level in decibels? Use the usual reference level of I0 = 1.0×10−12 W/m2.
    13·1 answer
  • Hello help me pls! i need serious help
    14·2 answers
  • Cuando es más confiable el valor central de una medición
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!