it's how much it weighs and how much force is pushing on it like a egg if i drop it the weigh can cause it to break and how much force the gravity is pushing on it.
Friction force is when you rub 2 things together and they get warm. Motion, on the other hand, is if your walking along the sidewalk - you hardly get warmer -------
Unless it's a colder day outside and you're walking SO you decide to rub your hands together to get warm, but if you were just walking , its motion and only motion - no friction :):)
Answer:
(C) apparently written incorrectly - it should be 29.9 +- .3 K
(read 29.9 plus or minus .3 K)
Answer:
Explanation:
The distance travelled in the free fall is H - h
Since the apple originally started from rest we can use v^2 = u^2 + 2 x g x s where v is the final velocity, g the accln due to gravity and s the distance travelled and u is the initial velocity = 0
So the velocity just before it enters the grass is sq rt [2 x g x (H - h)]
Once in the grass, it slows down at a constant rate which means that the acceleration (a) during this period is constant.
So once again using the same formula we have v = O and u = sq rt[2 x g x (H-h)]
so since v^2 = u^2 + 2 x a x s then
O^2 = 2 x g x (H-h) + 2 x a x h
{O^2 - 2 x g x (H - h)}/(2 x h) = a
Answer:
C
Explanation:
For the explained scenario in the free body force diagram definitely the two forces 1200 N and 800 N should present as they are the acting forces
So A & D rules out.
Then you must think of B & C.
You also know that the weight of the load is always acting downwards as that force is generated by gravitational field of Earth. So 800 N should be downwards not upwards. That rules out B.
So answer is C
(Free body diagram is shown in the graph)