Complete Question
The complete question is shown on the uploaded image
Answer:
The tension on the shank is 
Explanation:
From the question we are told that
The strain on the strain on the head is 
The contact area is
Looking at the first diagram
At 600 MPa of stress
The strain is 
At 450 MPa of stress
The strain is 
To find the stress at
we use the interpolation method

Substituting values



Generally the force on each head is mathematically represented as

Substituting values


Now the tension on the bolt shank is as a result of the force on the 6 head which is mathematically evaluated as



(a) The free body of all the forces include, frictional force, weight of the box acting perpendicular and another acting parallel to the plane.
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
<h3>
Free body diagram</h3>
The free body diagram of all the forces on the box is obtained by noting the upward force and downward forces on the box as shown below;
/ W2
Ф → Ff
↓W1
where;
- Ff is the frictional force resisting the down motion of the box
- W1 is the perpendicular component of the box weight = Wcos(33)
- W2 is the parallel component of the box weight = Wsin(33)
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
Learn more about free body diagram of inclined objects here: brainly.com/question/4176810
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
Answer:
...
<h2>PE=
<em>work done</em></h2><h2>
<em>m</em><em>gh</em><em>=</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>×</em><em>2</em><em>0</em><em>.</em><em>.</em></h2>

.
<em>I </em><em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer: m = 0.4 kg
Explanation: Momentum is the product of mass and velocity also expressed in this equation:
p = m x v
Derive to find m
m = p / v
= 10 kg•m/s / 25 m/s
= 0.4 kg