Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.
The cart comes to rest from 1.3 m/s in a matter of 0.30 s, so it undergoes an acceleration <em>a</em> of
<em>a</em> = (0 - 1.3 m/s) / (0.30 s)
<em>a</em> ≈ -4.33 m/s²
This acceleration is applied by a force of -65 N, i.e. a force of 65 N that opposes the cart's motion downhill. So the cart has a mass <em>m</em> such that
-65 N = <em>m</em> (-4.33 m/s²)
<em>m</em> = 15 kg
68 miles per hour 1.1333 miles per minute
I can't draw you the graph right now because i'm out but look up graphing calculator and click on the first one, type in your equation and it will show you the graph