1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
3 years ago
9

Help pls I don’t understand the question.

Engineering
1 answer:
REY [17]3 years ago
3 0

Answer:

I think it's asking what the area is when it says A=

when it says d= it means diameter

so for the first one, I believe the answer would be 28.27

and the second one would be 0.79

You might be interested in
A weighted, frictionless piston-cylinder device initially contains 5.25 kg of R134a as saturated vapor at 500 kPa. The container
kykrilka [37]

Answer:

-6.326 KJ/K

Explanation:

A) the entropy change is defined as:

delta S_{12}=\int\limits^2_1  \, \frac{dQ}{T}

In an isobaric process heat (Q) is defined as:

Q= m*Cp*dT

Replacing in the equation for entropy  

delta S_{12}=\int\limits^2_1 \frac{m*Cp*dT}{T}

m is the mass and Cp is the specific heat of R134a. We can considerer these values as constants so the expression for entropy would be:  

delta S_{12}= m*Cp*\int\limits^2_1 \frac{ dT }{T}  

Solving the integral we get the expression to estimate the entropy change in the system  

delta S_{12}= m*Cp *ln(\frac{T_{2}}{T_{1}})

The mass is 5.25 Kg and Cp for R134a vapor can be consulted in tables, this value is 0.85\frac{kJ}{Kg*K}

We can get the temperature at the beginning knowing that is saturated vapor at 500 KPa. Consulting the thermodynamic tables, we get that temperature of saturation at this pressure is: 288.86 K

The temperature in the final state we can get it from the heat expression, since we know how much heat was lost in the process (-976.71 kJ). By convention when heat is released by the system a negative sign is used to express it.

Q= m*Cp*dT

With dt=T_{2}-T_{1} clearing for T2 we get:

T_{2}=\frac{Q}{m*Cp}+T1= \frac{-976.71kJ}{5.25Kg*0.85\frac{kJ}{Kg*K}}+288.86 K =69.98 K

Now we can estimate the entropy change in the system

delta S_{12}= m*Cp*ln(\frac{T_{2}}{T_{1}})= 5.25Kg*0.85\frac{kJ}{Kg*K}*ln(\frac{69.98}{288.861})= -6.326\frac{kJ}{K}

The entropy change in the system is negative because we are going from a state with a lot of disorder (high temperature) to one more organize (less temperature. This was done increasing the entropy of the surroundings.  

b) see picture.

3 0
3 years ago
3 examples of technology transfer pls
OLEGan [10]

Answer: electrical, mathematical, and geographical

Explanation: Yee  

                              - Cash Nasty

3 0
3 years ago
Read 2 more answers
What type of intersection is this?
mote1985 [20]
Diverging Diamond Interchange
6 0
3 years ago
What's a disadvantage of highest MERV-rated filters?
Arte-miy333 [17]

Answer:

3) the pressure drop across high MERV filters is significant.

Explanation:

MERV (Minimum-Efficiency Reporting Value) is used to measure the efficiency of filter to remove particles. A filter of high MERV can filter smaller particles but this causes an increase in reduced air flow that is an increase in pressure drop. High MERV filters capture more particles causing them to get congested faster and thereby increasing pressure drop.

Excessive pressure drop can cause overheating and lead to damage of the filter. The pressure drop can be reduced by increasing the surface area of the filter.

3 0
3 years ago
Read 2 more answers
A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
gayaneshka [121]

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

7 0
3 years ago
Other questions:
  • A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. planks glued together to form a section 6 i
    5·1 answer
  • Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the entire lower surfa
    12·1 answer
  • when a metal, such as lead, is oxidied (loses electrons) to form a positive ion (cation), how does he solubility change?
    14·1 answer
  • An insulated tank having a total volume of 0.6 m3 is divided into two compartments. Initially one compartment contains 0.4 m3 of
    8·1 answer
  • Acredit report summarizes a person's Acredit score is measure of a person's as a borrower a factor that contributes to a person'
    15·1 answer
  • PLEASE HELP!!! <br><br>I've included attachments. Can someone just check my answers pls??
    9·1 answer
  • A paint company produces glow in the dark paint with an advertised glow time of 15 min. A painter is interested in finding out i
    11·1 answer
  • What structure was created to help prevent shipwrecks?
    9·1 answer
  • Suppose you have two arrays: Arr1 and Arr2. Arr1 will be sorted values. For each element v in Arr2, you need to write a pseudo c
    11·1 answer
  • Please help been stuck on this for a couple minutes
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!