Answer:
COP(heat pump) = 2.66
COP(Theoretical maximum) = 14.65
Explanation:
Given:
Q(h) = 200 KW
W = 75 KW
Temperature (T1) = 293 K
Temperature (T2) = 273 K
Find:
COP(heat pump)
COP(Theoretical maximum)
Computation:
COP(heat pump) = Q(h) / W
COP(heat pump) = 200 / 75
COP(heat pump) = 2.66
COP(Theoretical maximum) = T1 / (T1 - T2)
COP(Theoretical maximum) = 293 / (293 - 273)
COP(Theoretical maximum) = 293 / 20
COP(Theoretical maximum) = 14.65
Answer:
a) 1/2
Explanation:
Overexertion accounted for more than half of all events that resulted in a disabling condition.
Furthermore, 30% of all overexertion cases were reported in the services industry, on the other hand, 25% of injuries resulting from contact with objects and equipment occurred in the manufacturing industry.
The above piece of information is taken from the bureau of labor statistics, Survey of Occupational Injuries and Illnesses
"LOST-WORKTIME INJURIES AND ILLNESSES: CHARACTERISTICS AND RESULTING DAYS AWAY FROM WORK, 2002"
Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
Answer:
See explaination
Explanation:
Lets first consider the term Isentropic efficiency. The isentropic efficiency of a compressor or pump is defined as the ratio of the work input to an isentropic process, to the work input to the actual process between the same inlet and exit pressures. IN practice, compressors are intentionally cooled to minimize the work input.
Please kindly check attachment for the step by step solution of the given problem.