Answer:
Pressure- temperature diagram of the fluid is the phase lines that separate all the phases.
Explanation:
Step1
Pressure temperature diagram is the diagram that represents the all the phases of the fluid by separating a line. There is no phase change region in the pressure temperature diagram out of 15 possible diagrams. There are three lines that separate the phase of the fluid. These three lines are fusion, vaporization and sublimation.
Step2
The intersecting point of these lines is triple point of fluid. Out of 15 possible phase diagram, only pressure temperature diagram has triple point as a point. In other diagrams phase change region is present and triple point is not a point. Critical point is the point in all possible property diagrams.
Pressure temperature diagram is shown below:
A staircase what makes it a lever is another objects used to displace the force better
Known :
D = 12 in = 1 ft
L = 850 ft
Q = 5.6 cfs
hA = 750 ft
hB = 765 ft
PA = 85 psi = 12240 lb/ft²
Solution :
A = πD² / 4 = π(1²) / 4
A = 0.785 ft²
<u>Velocity of water :</u>
U = Q / A = 5.6 / 0.785
U = 7.134 ft/s
<u>Friction loss due to pipe length :</u>
Re = UD / v = (7.134)(1) / (0.511 × 10^(-5))
Re = 1.4 × 10⁶
(From Moody Chart, We Get f = 0.015)
hf = f(L / d)(U² / 2g) = 0.015(850 / 1)((7.134²) / 2(32.2))
hf = 10 ft
PA + γhA = PB + γhB + γhf
PB = PA + γ(hA - hB - hf)
PB = 12240 + (62.4)(750 - 765 - 10)
PB = 10680 lb/ft²
PB = 74.167 psi
Answer:
Check the explanation
Explanation:
Solution
Let the
binary input one A,B,C,D and output is F with
binary inputs we have
combination as in below.
Kindly check the attached image below to get the full step by step explanation to the question above.