The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correctly represented by F/A - (My)/(Iz).
<h3>What is the distribution of pressure at some stage in bending?</h3>
Compressive and tensile forces expand withinside the path of the beam axis beneath neath bending loads. These forces set off stresses at the beam. The most compressive pressure is observed on the uppermost fringe of the beam whilst the most tensile pressure is positioned on the decrease fringe of the beam.
The bending pressure is computed for the rail through the equation Sb = Mc/I, wherein Sb is the bending pressure in kilos in keeping with rectangular inch, M is the most bending second in pound-inches, I is the instant of inertia of the rail in (inches)4, and c is the space in inches from the bottom of rail to its impartial axis.
Read more about beam;
brainly.com/question/25329636
#SPJ1
Answer:
u will need good car parts and a very well made engine
Explanation:
u need a good engine because if u only work on the outer layer of the car the inner parts will be slow and old and the car will have problems
Answer:
This is a function written in Python Programming Language to check whether a given number is prime or not.
def is_prime(n):
if (n==1):
return False
elif (n==2):
return True;
else:
for x in range(2,n):
if(n % x==0):
return False
return True
print(is_prime(9))
Explanation:
<h2 />
Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation
Answer:
Enthalpy at outlet=284.44 KJ
Explanation:


We need to Find enthalpy of outlet.
Lets take the outlet mass m and outlet enthalpy h.
So from mass conservation

m=1+1.5+2 Kg/s
m=4.5 Kg/s
Now from energy conservation

By putting the values

So h=284.44 KJ