Answer:
3.8 g/mL
Explanation:
From the question given above, the following data were obtained:
Volume of Water = 60 mL
Volume of Water + Object = 73.5 mL
Mass of object = 51.3 g
Density of object =?
Next, we shall determine the volume of the object. This can be obtained as follow:
Volume of Water = 60 mL
Volume of Water + Object = 73.5 mL
Volume of object =?
Volume of object = (Volume of Water + Object) – (Volume of Water)
Volume of object = 73.5 – 60
Volume of object = 13.5 mL
Finally, we shall determine the density of the object as illustrated below:
Volume of object = 13.5 mL
Mass of object = 51.3 g
Density of object =?
Density = mass /volume
Density of object = 51.3 /13.5
Density of object = 3.8 g/mL
Thus, the density of the object is 3.8 g/mL
Answer:
The rate of evaporation decreases, or slows down
Explanation:
Answer is: <span>the molarity of HCl is </span>0.097 M.
Chemical reaction: LiOH + HCl → LiCl + H₂O.
V(HCl) = 13.60 mL - 1.25 mL = 12.35 mL.
V(LiOH) = 11.20 mL - 2.65 mL = 8.55 mL.
c(LiOH) = 0.140 M.
From chemical reaction: n(LiOH) : n(HCl) = 1 : 1.
c(HCl) · V(HCl) = c(LiOH) · V(LiOH).
c(HCl) = 8.55 mL · 0.140 M / 12.35 mL.
c(LiOH) = 0.097 M.
Answer:
n = 2.58 mol
Explanation:
Given data:
Number of moles of argon = ?
Volume occupy = 58 L
Temperature = 273.15 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 58 L = n × 0.0821 atm.L/ mol.K × 273.15 K
58 atm.L = n × 22.43 atm.L/ mol.
n = 58 atm.L / 22.43 atm.L/ mol
n = 2.58 mol