Answer:
The correct answer is option A, that is, one valence electron in its third energy shell and option C, that is, 11 electrons and 11 protons.
Explanation:
The outermost electrons and the ones that take part in the process of bonding are termed as valence electrons. The atomic number of sodium is 11, thus, it possesses 11 protons and the atoms are neutral so it suggests that sodium has 11 electrons. By electronic configuration, it can be seen that in sodium, two electrons are present in the first shell, 8 in the second, and only one electron in the third shell, that is, 2.8.1. The electron present in the third shell is the valence electron.
<h2>Input =

, water and Output =

</h2>
Explanation:
The light reactions of photosynthesis use water and produce Oxygen, NADPH.
The equation for photosynthesis :
→ 
The process of photosynthesis in two stages -
- The first stage is called the light reaction in which the light energy from the sun is captured and converted into chemical energy stored in the form of ATP and NADPH
- The second stage is the process of conversion of ATP molecules to sugar or glucose (the Calvin Cycle)
For a light reaction -
Net Input is of,
, 
Net Output is of, 
Answer:
magnesium chloride (no prefixes)
Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be
.
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.
spindle fibers
i think the next is two nuclei and still together but that stage is not anaphase. Anaphase is when the sister chromatids are pulled apart