The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.
The correct choice in the options above is the aerosols. It is because the aerosols are the ones that are combined with gaseous substances and water in order for it to be formed. Without the gaseous substance being joined with the water then the aerosols won't be produced.
Answer:
7.81 moles
Explanation:
To solve this problem, let us generate an expression involving volume and number of mole of the gas since the pressure and temperature of the gas are constant.
From ideal gas equation:
PV = nRT
Divide both side by P
V= nRT/P
Divide both side by n
V/n = RT/P
Since RT/P are constant, then:
V1/n1 = V2/n2
Data obtained from the question include:
V1 = 4.11
n1 = 2.51 moles
V2 = 16.9L
n2 =?
Using the above equation i.e V1/n1 = V2/n2, the final number of the gas can be obtained as illustrated below:
4.11/2.51 = 16.9/n2
Cross multiply to express in linear form
4.11 x n2 = 2.51 x 16.9
Divide both side by 4.11
n2 = (2.51 x 16.9) / 4.11
n2 = 10.32moles
Now, to obtain the number of mole of the gas added, we'll subtract the initial mole from the final mole i.e
n2 — n1
Number of mole added = n2 — n1
10.32 — 2.51 = 7.81 moles
Therefore, 7.81 moles of the gas was added to the container
No. Symbiosis exists with all life forms. For example, the sloth can grow algae (a plant) on its back. The sloth gets a bit of protection and the algae lives (Mutualism.)