Convert mols to grams by multiplying grams of tin by the number of mols.
There are 119 grams per mol
119 x 11.8 = 1404 grams
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
I don’t know if this is right but I thing It’s B
The mass of water produced by the reaction of the 23 g of
is 13.8 g.
The given chemical reaction;

In the given compound above, we can deduce the following;
- molecular mass of
= 28 + (2 x 16) = 60 g - molecular mass of
= 2(18) = 36 g
60 g of
--------- 36 g of water
23 g of
------------- ? of water

Thus, the mass of water produced by the reaction of the 23 g of
is 13.8 g.
- <em>"Your question is not complete, it seems to be missing the following information";</em>
In the reaction of the given compound,
, what mass of water (in grams) is produced by the reaction of 23.0 g of SiO2?
Learn more here:brainly.com/question/13644576