Answer:
Because electron mass is so insignificant compared to proton and neutron mass that it can be ignored.
Explanation:
The statement "An atom with high ionization energy will form a positive ion more easily than an atom with low ionization energy" is false.
In this context , we will define ionization energy as the minimum energy required to remove a valence electron from a neutral atom in it's gaseous state. In a sense the ionization energy is a measure the amount of 'difficulty' of making something an ion. A high ionization energy means that it takes a lot of energy to remove a valence electron from that atom. A low ionization energy means that it is easy to remove a valence electron from the atom. It is known that group 1 elements generally have a low ionization energy. On the other hand, it is harder for noble gasses and group 7 atoms to loose electrons because they have higher ionization energy.
To form a positive ion, you have to remove an electron. When an electron is removed from an atom, there ion formed has more positive charges than negative charges in it, making it net positive. We have established that atoms with low ionization energy loose elections much more easily. We have also established that atoms with high ionization energy do not loose electrons easily. From this we can gather that the statement is false. An atom with high ionization energy will not form a positive ion more easily that an atom with low ionization energy.
Reorder 4Fe and 3O2.
3O2 + 4Fe
An oxidation-reduction (redox<span>) </span>reaction<span> is a type of chemical </span>reaction<span> that involves a transfer of electrons between two species. An oxidation-reduction </span>reaction<span> is any chemical </span>reaction<span> in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.</span>
If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.