Answer:
weigh is 2353.13 N
Explanation:
Given data
density = 7890.00 kg/m3
lighter = 299 N
to find out
the volume of the anchor and weigh in air
solution
from question we can say that
apparent weight = actual weight - buoyant force
we know weight = mg and buoyant force = water density × g
so volume of anchor is = actual weight - apparent weight / buoyant force
volume of anchor is = 299 / 1000 × 9.81
volume of anchor is = 0.0304791 m³
and
weight of anchor is mg
here mass m = density Fe g
density Fe = 7870 from table 14-1
so weight = 7870 × 0.0304791 × 9.81
weigh is 2353.13 N
The projectile has a height <em>h</em> at time <em>t</em> given by
<em>h</em> = (14.0 m/s) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for <em>t</em> when <em>h</em> = 0 :
0 = (14.0 m/s) <em>t</em> - 1/2 <em>g t</em> ²
0 = 1/2 <em>t</em> (28.0 m/s - <em>g t</em> )
1/2 <em>t</em> = 0 <u>or</u> 28.0 m/s - <em>g</em> <em>t</em> = 0
The first equation says <em>t</em> = 0, which refers to the moment the gun is first fired, so we ignore that solution. We're left with
28.0 m/s - <em>g t</em> = 0
<em>t</em> = (28.0 m/s) / <em>g</em>
<em>t</em> = (28.0 m/s) / (9.80 m/s²)
<em>t</em> ≈ 2.86 s
Answer:
graph 1
Explanation:
acceleration is defined as change in velocity/ change in time.
A constant acceleration should have a linear line.
Since velocity is in the numerator of the formula it is the dependent variable which will go on the y axis. thus making time the independent going on the x axis.
This makes sense because velocity should depend on time not the other way around. This therefore making the right answer graph 1