1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
15

Police radar equipment is used to detect the speed of objects. In one trial, the radar equipment records a stationary tree as tr

aveling at 6 mph, although in another trial it records the tree as traveling at 0 mph. Which of the following measurement problems exist in the radar equipment? Correct Answer(s) reliability construct validity accuracy
Physics
1 answer:
Brut [27]3 years ago
8 0

Answer:

reliability

accuracy

Explanation:

If a reading of a measurement is consistently the same then the measurement is reliable.

If a reading of measurement is close the actual value of the measurement then the reading is accurate.

Here, a stationary tree shows reading 6 mph once and 0 mph another instant. So, neither the reading of a measurement is consistent not the reading of measurement is close the actual value.

Hence, the radar has problems in its reliability and accuracy

You might be interested in
The atmosphere is held together by
Vera_Pavlovna [14]

Answer:

D. gravity

Explanation:

Gravity keeps the atmosphere from escaping into space.

3 0
4 years ago
3. When a person is outside of the system and they add energy to the
NISA [10]

Answer:

We show added energy to a system as +Q or -W

Explanation:

The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;

Energy is added to the internal energy of a system as either work energy or heat energy as follows;

ΔU = Q - W

Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).

5 0
3 years ago
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
A student sits at rest on a piano stool that can rotate without friction. The moment of inertia of the student-stool system is 4
irina [24]

Here We can use principle of angular momentum conservation

Here as we know boy + projected mass system has no external torque

Since there is no torque so we can say the angular momentum is conserved

mvL = (I + mL^2)\omega

now we know that

m = 2 kg

v = 2.5 m/s

L = 0.35 m

I = 4.5 kg-m^2

now plug in all values in above equation

2\times 2.5 \times 0.35 = (4.5 + (2\times 0.35^2))\omega

1.75 = [4.5 + 0.245]\omega

1.75 = 4.745\omega

\omega = 0.37 rad/s

so the final angular speed will be 0.37 rad/s

4 0
3 years ago
The process of burning fuel is called?
user100 [1]
The process of burning fuel is Combustion
5 0
4 years ago
Read 2 more answers
Other questions:
  • This phenomenon is known as the bends. If a scuba diver rises quickly from a depth of 25.0 m in Lake Michigan (which is fresh wa
    9·1 answer
  • What is a standard with measuremen?
    10·1 answer
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • A space station shaped like a giant wheel has a radius of a radius of 153 m and a moment of inertia of 4.16 × 10⁸ kg·m² (when it
    15·1 answer
  • John rides his motorcycle with a constant speed of 40 miles per hour. How far can he travel in 1/2 an hour?
    14·1 answer
  • the acceleration due to gravity on the moon is 1.6 m/s^2 what is the gravitational potential energy of a 1200 kg lander resting
    6·1 answer
  • Which statement correctly summarizes Wegener’s theory of continental drift?
    6·2 answers
  • Everyone open this please!
    13·2 answers
  • A spacecraft travels at 1.5 X 108 m/s relative to Earth. A process onboard the
    8·1 answer
  • A mass of 0.34 kg is fixed to the end of a 1.4 m long string that is fixed at the other end. Initially at rest, he mass is made
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!