Answer:
Motion with constant velocity of magnitude 1 m/s (uniform motion) for 4 seconds in a positive direction and then for 2 seconds uniform motion with constant velocity of magnitude 3 m/s in reverse direction .
Explanation:
The graph shows a constant velocity of 1 m/s for 4 seconds in the positive direction. After that, between 4 seconds and 6 seconds, the object reverses its motion with constant velocity of magnitude 3m/s.
Answer:
the force exerted by the seat on the pilot is 10766.7 N
Explanation:
The computation of the force exerted by the seat on the pilot is as follows:

Hence, the force exerted by the seat on the pilot is 10766.7 N
According to the statement " Collision <span>between two bodies in which the total kinetic energy of the two bodies after the collision is equal to their total kinetic energy before the collision."
The best answer is :
Option A " </span><span>BODY A COMES TO REST BODY B STARTS MOVING WITH INITIAL VELOCITY OF BODY A "</span>
Answer:
Explanation:
same idea as before Liam, first, find the parallel resistance in 35 || 20
(35*20) / (35+20) = 700 / 55 = 12.727272 ohms
now add the 12.727272 + 15 = 27.727272 ohms total resistance
V = IR
10 = I * 27.727272
10 / 27.727272 = I
0.360655 = I
V = IR (again, but across the 15 ohm resistor)
V = 0.360655 * 15
V = 5.4098
Explanation:
<em>"The accuracy of a potentiometer can be increased by decreasing the potential gradient across the potentiometer wire, and this can be achieved by increasing the length"</em>
<em />
<u>The factors that are affecting/limiting the accuracy of the potentiometer are:
</u>
-
The specific resistance of the material of the potentiometer wire.
- The potential gradient
- The current passing through the potentiometer wire.
- Area of a cross-section of the wire
- Internal temperature.
<u>The objective of reversing the terminals of the cell</u>
If the jockey of the potentiometer is pressed for a long time, joule heating sets in, so that reversing the terminals of the potentiometer will prevent the resistance due to joule heat from being added to the measured resistance, ultimately preventing unwanted resistance