The direction of the magnetic field in front of the wire closest to the student is on the left. The direction is found by the right-hand rule.
<h3>What is the right-hand rule?</h3>
The right-hand rule is a popular mnemonic for remembering how axes in three-dimensional space are oriented.
The fact that the three axes of three-dimensional space have two different orientations gives birth to the majority of the many left-hand and right-hand rules.
Using the right-hand rule, we can recall this diagram. Your thumb points in the direction of the magnetic force pushing on the moving charge
If you point your pointer finger in the direction of the positive charge and then your middle finger in the direction of the magnetic field.
To learn more about the right-hand rule refer to the link;
brainly.com/question/9750730
Answer:
D: Water is polar, so it can form attractions to and pull apart molecules of many types of substances.
Explanation:
Water is an excellent solvent simply because its polar water molecules usually form hydrogen bonds with ions and polar molecules, thereby allowing the ionic and polar covalent compounds to easily disperse easily in water.
Thus, the correct option is; D
The three longest wavelengths for the standing waves on a 264-cm long string that is fixed at both ends are:
- 5.2 meters.
- 2.6 meters.
- 1.7meters.
Given data:
Length of the fixed string = 264cms = 2.64 meters
The wavelength for standing waves is given by:
λ = 2L/n
where,
- λ is the wavelength
- L is the length of the string
For n = 1,
= 5.2 meters
For n = 2,
= 2.6 meters
For n = 3,
= 1.7 meters
To learn more about standing waves: brainly.com/question/14151246
#SPJ4
Answer:
the result is the quantization of __Energy__ of the particle
Explanation: