Answer:
Explanation:
mass of object, m = 3 kg
spring constant, K = 750 n/m
compression, x = 8 cm = 0.08 m
angle of gun, θ = 30°
(a) As the ball is launched, it has some velocity due to the compression in the spring, so it has some kinetic energy.
(b) Let v be th evelocity of ball at the tim eof launch.
by using the conservation of energy
1/2 Kx² = 1/2 mv²
750 x 0.08 x 0.08 = 3 x v²
v = 1.265 m/s
By use of the formula of maximum height


h = 0.02 m
h = 2 cm
Answer:
(a) W = 1329.5 J = 1.33 KJ
(b) ΔU = 24.27 KJ
Explanation:
(a)
Work done by the gas can be found by the following formula:

where,
W = Work = ?
P = constant pressure = (0.991 atm)(
) = 100413 Pa
ΔV = Change in Volume = 18.7 L - 5.46 L = (13.24 L)(
) = 0.01324 m³
Therefore,
W = (100413 Pa)(0.01324 m³)
<u>W = 1329.5 J = 1.33 KJ</u>
<u></u>
(b)
Using the first law of thermodynamics:
ΔU = ΔQ - W (negative W for the work done by the system)
where,
ΔU = change in internal energy of the gas = ?
ΔQ = heat added to the system = 25.6 KJ
Therefore,
ΔU = 25.6 KJ - 1.33 KJ
<u>ΔU = 24.27 KJ</u>
"v0" means that there are no friction forces at that speed
<span>mgsinΘ = (mv0²/r)cosΘ → the variable m cancels </span>
<span>sinΘ/cosΘ = tanΘ = v0² / gr
</span><span>Θ = arctan(v0² / gr) </span>
<span>When v > v0, friction points downslope: </span>
<span>mgsinΘ + µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ + µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = ((v²/r)cosΘ - gsinΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
<span>When v > v0, friction points upslope: </span>
<span>mgsinΘ - µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ - µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = (gsinΘ - (v²/r)cosΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
Answer:
the angle of incident is 40°
Explanation:
NQ is the normal to the mirror, therefore
angle NQA =90°
PQA = 50°
incident angle = NQA - PQA
90°- 50° = 40°
note that the angle of reflection is equal to the angle of incident
Answer:
Part a)

Part b)

Part c)

Part d)
Net force on a closed loop in uniform magnetic field is always ZERO

Explanation:
As we know that force on a current carrying wire is given as

now we have
Part a)
current in side 166 cm and magnetic field is parallel
so we have

here we know that L and B is parallel to each other so

Part b)
For 68.1 cm length wire we have

here we know that


so we have


Part c)
For 151 cm length wire we have

here we know that


so we have


Part d)
Net force on a closed loop in uniform magnetic field is always ZERO
