Answer:

Explanation:
The ball will rise decreasing its speed until it reaches the highest point where its speed will be zero. From this point the tennis ball will begin to fall again, in the free fall the tennis ball will gain speed but now in the opposite direction. When it returns to the same point where it was launched, its speed will be the same as the one that was launched but with the opposite sign.

We can check this using the equation:

where 
ang h is the height, but because the ball returns to the same point where it started, h =0
then


the initial and final velocity will be the same in number, but we know that the ball is going in the opposite direction, so the final velocity must have the opposite sign from the initial velocity
so if
,

Vb - Va = -366.7 V.
Vab = Va - Vb, the potential of a with respect to b, is equal to the work done by the electric force when a unit of charge moves from a to b, it is given by:
Vab = Va - Vb = Wab/q,
So, in order to determinate the potential difference Vb - Va we have to multiply by -1 both side of the equation above:
- (Va - Vb) = - (Wab/q)
Resulting
Vb - Va = -(Wab/q)
Given a positive charge q = 6.0μC = 6.0x10⁻⁶C, Wab = 2.2x10⁻³J. Determine Vb - Va.
Vb - Va = - (2.2x10⁻³J/6.0x10⁻⁶C)
Vb - Va = -366.7 J/C = -366.7 V
nowhere because if there was water on the moon the water would float away but besides that it would be in the inner core of the moon
Answer:
16,139.7 m3
Explanation:
you divide 633,019 ÷ 191,714 to get 3.302 to find out how much greater the pa was from the first tire. then you multiply 3.302 × 4,888 m3 to get how much greater the volume is, which is also the answer.
Answer:
all the heat energy goes into breaking the bonds of the ice's crystal lattice structure.
Explanation:
When you heat ice, its temperature rises, but as soon as the ice starts to melt, the temperature stays constant until all the ice has melted.