This is dependent on how many shells/layers/energy levels the element has. The first shell can only hold 2 electrons however every shell beyond that can hold 8 electrons
Opportunity cost refers to what you have to give up to buy what you want in terms of other goods or services. When economists use the word “cost,” we usually mean opportunity cost.
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
Answer:
numbers
Explanation:
Virtually all unimaginable processes can be described as the movement of certain objects. To analyze and predict the nature of the movements that result from the different kinds of interactions, some important concepts such as momentum, force and energy have been invented. If momentum, force, and energy are known and expressed in a quantitative way (that is, by numbers) it is possible to establish rules by which the resulting movements can be predicted.