1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
3 years ago
15

An airplane with a total mass of 950 kg has an engine malfunction, causing it

Physics
1 answer:
REY [17]3 years ago
5 0

Answer:

3.4 m/s2

Explanation:

Multiple choice Questions about the statement true and how you can be separated by filtration and the way you treat your business and your business to make your life easier and easier to understand and understand the importance of life and damage

You might be interested in
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1
notka56 [123]

Complete Question

Part of the question is shown on the first uploaded image

The rest of the question

What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.

Answer:

The net force exerted on the third charge is  F_{net}=  3.22*10^{-5} \ J

Explanation:

From the question we are told that

    The third charge is  q_3 =  55 nC =  55 *10^{-9} C

    The position of the third charge is  x = -1.220 \ m

     The first charge is q_1 =  -16 nC  =  -16 *10^{-9} \ C

     The position of the first charge is x_1 =  -1.650m

      The second charge is  q_2 =  32 nC  =  32 *10^{-9} C

      The position of the second charge is  x_2 =   0  \ m  

The distance between the first and the third charge is

      d_{1-3} =  -1.650 -(-1.220)

     d_{1-3} = -0.43 \ m

The force exerted on the third charge by the first is  

     F_{1-3} =  \frac{k  q_1 q_3}{d_{1-3}^2}

Where k is the coulomb's constant with a value  9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

substituting values

      F_{1-3} =  \frac{9*10^{9}* 16 *10^{-9} * (55*10^{-9})}{(-0.43)^2}

       F_{1-3} = 4.28 *10^{-5} \ N

 The distance between the second and the third charge is      

  d_{2-3} =  0- (-1.22)

   d_{2-3} =1.220 \ m

The force exerted on the third charge by the first is mathematically evaluated as

       F_{2-3} =  \frac{k  q_2 q_3}{d_{2-3}^2}

substituting values

       F_{2-3} =  \frac{9*10^{9} * (32*10^{-9}) *(55*10^{-9})}{(1.220)^2}

       F_{2-3} =  1.06*10^{-5} N

The net force is

      F_{net} =  F_{1-3} -F_{2-3}

substituting values

    F_{net} = 4.28 *10^{-5} - 1.06*10^{-5}

    F_{net}=  3.22*10^{-5} \ J

6 0
2 years ago
A sinusoidal sound wave moves through a medium and is described by the displacement wave function
labwork [276]

By applying the wave equation we know that the displacement on the y-axis is 1.999 micrometers.

We need to know about wave equations to solve this problem. The displacement of the wave on the y-axis can be explained by the wave equation

y = A cos (kx - ωt)

where y is y-axis displacement, A is amplitude, k is wave number, x is x-axis displacement, ω is angular speed and t is time.

the wavenumber and angular speed of the wave equation can be determined respectively by

k = 2π / λ

ω = 2πf

where k is the wavenumber, λ is wavelength and f is frequency.

From the question above, we know that:

y = 2.00cos (15.7x - 858t)

(x in meters, t in second, y in micrometers)

x = 0.05 m

t = 3 ms

Convert time to second

t = 3ms = 0.003 s

By applying the wave equation, we get

y = 2.00cos (15.7x - 858t)

y = 2.00cos (15.7(0.05) - 858(0.003))

y  = 2 cos(-1.789)

y = 1.999 micrometers

For more on wave equation on: brainly.com/question/25699025

#SPJ4

7 0
1 year ago
Please Help!! This is very tough for me. Try you best to answer these problems!!Pleaseee
Andrews [41]

Answer:

everyone else does this to me so lol

Explanation:

7 0
3 years ago
Read 2 more answers
A small package is attached to a helium-filled balloon rising at 2 m/s. The package drops from the balloon when it is 14 meters
scZoUnD [109]
I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².

Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s
4 0
3 years ago
Calculate the rate of loss of heat through a glass window of area 200 CM square and thickness 0.5 CM where temperature inside is
saw5 [17]

Answer:

The inner and outer surfaces of a 0.5-cm thick 2-m by 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass

Explanation:

7 0
3 years ago
Other questions:
  • Define momentum in terms of football.
    9·1 answer
  • Can someone pls do this for me for 20 pts
    12·2 answers
  • What type of silicate mineral is olivine?
    12·2 answers
  • A magic school bus travelled along this path. What is the magnitude of the total
    13·1 answer
  • Does DNA produce any particular traits?
    7·1 answer
  • What is a dependent variable
    12·2 answers
  • Which of the following are simple machines?<br> Select all that apply.
    13·2 answers
  • If an object is dropped from 10 m above the ground, what is the height at which its kinetic energy and potential energy are equa
    9·1 answer
  • Calculate the speed of a satellite moving in a stable circular orbit about the Earth at a height of 4930 km .
    10·1 answer
  • Two charged particles are a distance of 1.72 m from each other. One of the particles has a charge of 7.03 nC, and the other has
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!