Explanation:
Work done is a physical quantity that is defined as the force applied to move a body through a particular distance.
Work is only done when the force applied moves a body through a distance.
Work done = Force x distance
The maximum work is done when the force is parallel to the distance direction.
The minimum work is done when the force is at an angle of 90° to the distance direction.
So to solve this problem;
multiply the force applied by Zack and distance through which the bull was pulled.
Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
Answer: 58.8235 km/h
speed = distance/time
the distance is 10 km
the time is 10 minutes
the unit is not correct, so we first change minute to hour
so 10/60 is 0.166667, rounded to 0.17.
10 km/ 0.17 hours =
Answer:

Explanation:
From the question we are told that:
Height of window 
Height of window off the ground 
Time to fall and drop
Generally the Newton's equation motion is mathematically given by

Where



Generally the Newton's equation motion is mathematically given by

Where





Therefore the ball’s initial speed

Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.