Answer:
1. 59 Ω
2. 3 Ω
3. 0.625 kΩ
Explanation:
1. The total resistance in a series circuit is equal to the sum of the resistance.

Therefore, the total resistance in the first circuit is 59 Ω.
2. The total resistance in a parallel circuit is equal to the sum of the reciprocals of the resistance.

Therefore, the total resistance in the second circuit is 3 Ω.
3. This is another parallel circuit, so we use the same equation from above:

Therefore, the total resistance in the third circuit is
kΩ, or 0.625 kΩ.
I hope this helps!
I do not understand what your saying could u plz be more specific?
Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
Answer:
W = 7000 J
Explanation:
To solve this problem we use that the speed of the bicycle is constant, therefore its acceleration is zero
F -fr = 0
F = fr
where F is the force applied by the child
Work is defined by
W = F. x
W = F x cos θ
in this case the child's force is parallel to the movement, therefore the angle is zero and cos 0 = 1
let's calculate
W = 35 200
W = 7000 J
Answer:
This could be done if a stop watch is used to calculate the time taken to hear the echo and a rule should be used to calculate the distance between the bricks and the wall. Then divide distance by time
Explanation:
I hope this is what you need
PLEASE MAKE ME BRAINLIEST