You need to consider the following:
Me (mass of Earth) = 5.98 x 10^24 kg
<span>Ms (mass of Sun) = 1.99 x 10^30 kg </span>
<span>G = 6.67 x 10^-11 N </span>
<span>
Formula:
F = G * M1M2/r^2
</span><span>The ratio FT/F = 4.02x10^-4 / 14.8
= 2.72x10^-5
</span><span>
Since,
1/2.72x10^-5 = 36800
The fraction ratio is 1/36800
</span>= <span>9.56x10^17 N</span>
The resultant vector is 5.2 cm at a direction of 12⁰ west of north.
<h3>
Resultant of the two vectors</h3>
The resultant of the two vectors is calculated as follows;
R = a² + b² - 2ab cos(θ)
where;
- θ is the angle between the two vectors = 45° + (90 - 57) = 78⁰
- a is the first vector
- b is the second vector
R² = (3.7)² + (4.5)² - (2 x 3.7 x 4.5) cos(78)
R² = 27.02
R = 5.2 cm
<h3>Direction of the vector</h3>
θ = 90 - 78⁰
θ = 12⁰
Thus, the resultant vector is 5.2 cm at a direction of 12⁰ west of north.
Learn more about resultant vector here: brainly.com/question/28047791
#SPJ1
Explanation:
Let us assume that forces acting at point B are as follows.
= 0 ...... (1)
= 0
= 0 .......... (2)
Hence, formula for allowable normal stress of cable is as follows.
T =
= 3925 kip
From equation (1), = -3925
= -3925
= 12877.29 kip
From equation (2), -12877.29 (Cos 60) + W = 0
= 0
W = 6438.64 kip
Thus, we can conclude that greatest weight of the crate is 6438.64 kip.
According to this equation
F = G × m₁*m₂ ÷ r²
other than the mass, the distance also affects the gravitational force between two objects (same mass or not).
Therefore the correct answer is B. The distance between the objects
Future note* use formulas to help you figure these sort of questions out. (if they have a formula to begin with).