To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. the <span>comparison is best supported by this information is that beryllium has a lower atomic radius than Barium</span>
Answer:
She run for, t = 0.92 s
Explanation:
Given data,
The velocity of the runner, v = 10 km/h
The distance covered by the runner, d = 9.2 km
The relationship between the velocity, displacement and time is given by the formula,
t = d / v
Substituting the given values in the above equation,
t = 9.2 / 10
= 0.92 s
Hence, she ran for, t = 0.92 s
Period = (1) / (frequency)
Period = (1) / (200 per second) = 0.005 second = 5 milliseconds
Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. Inertia is a passive property and does not enable a body to do anything except oppose such active agents as forces and torques.