Because the nucleus is made up of positively charged protons and neutrally charged neutrons, and no negatively charged particles, the charge of the nucleus will always be equal to the sum of the charges of its protons. A simpler way to say it is because each proton has a +1 charge, the charge of the nucleus will be the same as the number of protons in it.
<span>Its the impact theory.
It suggests that the moon resulted from the collision of two protoplanets, or embryonic worlds. One of those was the just-forming Earth, and the other was a Mars-size object called Theia. The moon then coalesced from the debris, thus giving it its irregular shape.</span>
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m
Answer: B, increase the rate at which he turns the crank
Explanation: i got it right
1) The object slows down due to kinetic friction.
2) The coefficient of kinetic friction is higher on a carpet than on the bare floor, therefore the object would slow down quicker on the carpet