Answer:
13.309 m/s²
Explanation:
Length from shoulder to hand, l = 30 cm = 0.3 m
initial velocity, u = 1 m/s
final velocity, v = 2.5 m/s
time, t = 3 s
Let the tangential acceleration is a.
by using first equation of motion
v = u + at
2.5 = 1 + 3 a
a = 0.5 m/s²
Let the centripetal acceleration is a'.
a' = v'²/l
a' = 2 x 2 / 0.3
a' = 13.3 m/s²
The tangential acceleration and the centripetal acceleration are both perpendicular to each other. So, the net acceleration is given by


A = 13.309 m/s²
Answer:
It is 52° below the celestial equator.
Explanation:
The declination is the angle in degrees measured north (+) or south (-) of the an imaginary line called the celestial equator.
The celestial equator is a projection of the earth's equator on the celestial sphere. imaginary
The star named Canopus has a declination of approximately –52°.
Since the angle is negative, this shows that it is south or below the celestial equator and at 52° south of the celestial equator.
Thus, the star named Caponus is 52° below the celestial equator.
Answer:
explained
Explanation:
Yes, the heating of filament is what causes the light production (photon emission), and this heating is caused because of current in the light bulb
(H= i^2*R*t i=current, H= heat, t= time and R= resistance).But using constant current source is not a good idea because in constant current source resistance is very low that can cause short circuit and ultimately fusing it. Whereas in constant voltage source current adjusts itself and prevents fusing because of high resistance in the circuit.
Answer:
1449 K
Explanation:
The surface temperature of a star is related to its peak wavelength by Wien's displacement law:

where
T is the surface temperature
b is Wien's displacement constant

So the surface temperature of the star is
